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1 Facts about complex numbers

1.1 Beyond real numbers

Real numbers can be represented by points on a number line with a fixed origin

O that represents the number 0. If r is a positive real number, we represent it as

a point P to the right of O on the number line with distance r. If r is a negative

real number, we represent it as a point to the left of O with distance |r|R, where

|r|R =

{
r if r ≥ 0

−r if r < 0.
.

PO

|r|R

Real number r > 0

P O

|r|R

Real number r < 0

The set of real numbers is denoted by R. Real numbers can be constructed

rigorously using Cauchy sequences {sn|n = 0, 1, 2 · · · } where sn are rational

numbers.

Let S be a subset of R. We say that a number α is algebraic over S if α is a

solution of a polynomial equation

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0

where aj ∈ S, 0 ≤ j ≤ n. For example, 1/2 is a number algebraic over the set of

integers Z since it satisfies 2x − 1 = 0 and
√

2 is algebraic over Q and Z since

it is a solution to x2 − 2 = 0. Note that a number algebraic over S may or may

not lie in S. For example, it is known that
√

2 is not rational even though it is

algebraic over Q.

Now, we know from the example of
√

2 that a number algebraic over Q is not

rational. If we replace Q by R, then we see that
√

2 is algebraic over R since it

is a solution of x−
√

2 = 0. The question that we want to ask is: Is there number

algebraic over R which does not belong to R? The answer to this question is

yes. Suppose α is a solution of x2 + 1 = 0 and α is real, then α2 = −1 < 0.

But we know that this is impossible since r2 ≥ 0 for every r ∈ R. The above

discussion shows that there must be a set of numbers algebraic over R which

properly contains R. We will construct this set of numbers in the next section.
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1.2 Complex numbers

In the previous section, we have seen that it is possible to construct “numbers”

that are not in R. We now define these “numbers” formally.

definition 1.1 Let R be the set of real numbers. The set of complex numbers

C is the set of ordered pairs of real numbers (a, b) with addition and multiplica-

tion defined by

(a, b)+(c, d) = (a+ c, b+ d)

and

(a, b)·(c, d) = (ac− bd, ad+ bc).

We also define a scalar product ·, namely, if r ∈ R,

r·(a, b) = (r · a, r · b).

Here · is the ordinary multiplication of real numbers.

With the definition of scalar product and +, we observe that the set C is a

vector space of dimension 2 over R.

We now consider ·. By definition of ·, we find that

(0, 1)·(0, 1) = (−1, 0) = (−1)·(1, 0).

With the notation 1 = (1, 0) and i = (0, 1),

i·i = (−1)·1.

We have thus found a “solution” to

x·x = −1.

With the notation 1 = (1, 0) and i = (0, 1), we can now write a complex

number as

a·1 + b·i.

Ignoring the colors for the operators, we arrive at the definition of complex

numbers given in many textbooks.

The sum and product of complex numbers can now be written as

a+ ib+ c+ id = (a+ c) + i(b+ d)

and

(a+ ib)(c+ id) = ac− bd+ i(ad+ bc)

respectively. Note that multiplication of complex numbers is motivated by treat-

ing a+ ib and c+ id like ordinary numbers with multiplication that distributes

over addition.
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definition 1.2 When a complex number is written as

z = a+ ib,

we call a the Real part of z (denoted by Re z) and b the Imaginary part of z

(denoted by Im z).

1.3 Division of complex numbers

When we first construct rational number, we ask for solution x such that

bx = a,

with b 6= 0. And we define x = ab−1 and this leads to division of a by b. In a

similar way, we ask for solution

(c+ id)x = (a+ ib).

We let

x = u+ iv.

Then we must find u, v from comparing the real part and imaginary part of the

numbers of both sides of the equation

cu− vd+ i(cv + du) = a+ ib.

The number u and v can be found using the relation(
c −d
d c

)(
u

v

)
=

(
a

b

)
which gives

u+ iv =
ca+ db

c2 + d2
+ i

bc− ad
c2 + d2

.

Remark 1.1 From

cu− vd+ i(cv + du) = a+ ib,

we have (
c −d
d c

)(
−v
u

)
=

(
−b
a

)
.

Hence, (
c −d
d c

)(
u −v
v u

)
=

(
a −b
b a

)
.
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This implies that we can identify s+ it with(
s −t
t s

)
.

Remark 1.2 Division is usually done using “rationalization” by “multiplying”

numerator and denominator by c− id if we write

x =
a+ ib

c+ id
.

definition 1.3 Let z be a non-zero complex number. We define the multi-

plicative inverse of z, denoted by z−1, as the complex number w satisfying the

equation

wz = 1.

Note that by the division of complex numbers, we find that

(a+ ib)−1 =
1

a2 + b2
(a− ib).

In mathematics, a group is a nonempty set G together with a binary operation

◦ : G×G→ G that satisfies the following conditions:

1. There exists an element e ∈ G such that g ◦ e = e ◦ g = g for all g ∈ G,

2. For every g ∈ G, there exists g′ ∈ G such that g ◦ g′ = g′ ◦ g = e,

3. For all g, h, k ∈ G, g ◦ (h ◦ k) = (g ◦ h) ◦ k.

In the process of showing that C is a vector space of dimension 2 over R, we

would have shown that (C,+) is a group. With the multiplicative inverse defined,

we can also show that (C\{0}, ·) is a group provided that · is associative, which

we leave as an exercise.

example 1.1 Show that if z, w and u are complex numbers then z·(u·w) =

(z·u)·w and z·u = u·z.

The addition and multiplication also satisfy the distributive law as can be

verified in the following exercise.

example 1.2 Show that for complex numbers z, w and u,

z·(w + u) = z·w + z·u.
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Solution

Let z = a+ ib, w = c+ id and u = e+ if . Then left hand side is

(a+ ib)·(c+ e+ i(d+ f)) = ac+ ae− bd− bf + i(bc+ be+ ad+ af).

The right hand side is

(a+ ib)·(c+ id) + (a+ ib)·(e+ if) = ac− bd+ i(bc+ ad) + ae− bf + i(be+ af)

and both sides are the same.

The facts that (C,+) and (C\{0}, ·) are abelian groups 1 and that · distributes

over + show that (C,+, ·) is a field.

1.4 Conjugate and modulus of z

There is a recurring appearance of the number a2 + b2 (in the inverse of z) and

as determinant of (
a −b
b a

)
.

definition 1.4 The number

|z| =
√
a2 + b2

is called the modulus of z.

Note that a2 + b2 = |z|2.

definition 1.5 The conjugate of z, denoted by z, is defined by a− ib.

Note that

zz = |z|2 + i0. (1.1)

In many textbooks, the above is written as

zz = |z|2. (1.2)

This is not accurate since by (1.1), we know that

|z|2 = Re(zz).

However, once we are familiar with complex numbers, we will not distinguish z·z
from |z|2 and use (1.2) instead.

1 Abelian groups are groups with binary operation having the additional property that
g ◦ g′ = g′ ◦ g.
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Remark 1.3 Note that | · | is consistent with absolute value | · |R, which we

encountered in the case of real numbers. Note that

|a+ i · 0| =
√
a2 = |a|R.

example 1.3 Establish the following facts:

Re z =
1

2
(z + z) , Im z =

1

2i
(z − z) , (z + w) = z + w,

zw = z · w, |zw| = |z||w|, |z/w| = |z|/|w| if w 6= 0, |z| = |z|.

example 1.4 Show that if z, w ∈ C, then zw = z · w and |zw| = |z||w|.

Solution

The first identity can be proved directly. Let z = a+ ib and w = c+ id. Then

z·w = ac− bd+ i(bc+ ad) = ac− bd− i(bc+ ad).

On the other hand,

z · w = (a− ib)(c− id) = ac− bd− i(bc+ ad).

Note that

|zw|2 = (zw)zw = zwzw

= zzww = |z|2 · |w|2,

which concludes the proof of the second identity.

example 1.5 Show that if w = 0 if and only if |w| = 0 and deduce that zw = 0

implies that z = 0 or w = 0.

Solution

If w = 0, then |w| = 02 + 02 = 0. If |w| = 0 and w = a + ib, then 0 = |w|2 =

a2 + b2 ≥ a2 ≥ 0. This implies that a = 0. Similarly, b = 0. Now if zw = 0, then

|zw| = |z||w| = 0. This implies that |z| = 0 or |w| = 0. By previous observation,

we conclude that z = 0 or w = 0. Another way to solve zw = 0 implies z = 0 or

w = 0 is to multiply both sides of zw = 0 by the inverse of z if z 6= 0.

example 1.6 Show that if A and B are integers that can be written as a sum

of two squares then AB is a sum of two squares.
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Solution

Let m = a2 + b2 = |a+ ib|2 and n = c2 + d2 = |c+ id|2 . Then

mn = |a+ ib|2 · |c+ id|2 = |(a+ ib)(c+ id)|2 = (ac− bd)2 + (ad+ bc)2.

1.5 The complex plane

As seen in previous sections, a complex number is defined as a number of the

form (a, b). Just as a real number can be represented graphically by a point on a

number line, a complex number can be represented by a point on a plane. This

is illustrated in the following diagram:

P = (a, b)

O

y = Im z

x = Re z

Addition of complex numbers then corresponds to addition of “vectors” as

shown in the following diagram:

y

x

z1

z2

z1 + z2

The following diagram illustrates the difference of two complex numbers:

y

x

z1

z2
z2 − z1
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It is known that if |r|R is the absolute value of a real number r then

|r + s|R ≤ |r|R + |s|R.

The same is true for the modulus of complex numbers. More precisely, we have

the following triangle inequality:

|z1 + z2| ≤ |z1|+ |z2|. (1.3)

To see (1.3) geometrically, we first observe that the modulus |z| is the length of

the vector (a, b) that represents z. Now, note that z1, z2 and z1 + z2 form the

vertices of a triangle. Since |z1 +z2| is the length of a side of the triangle, it must

be less than or equal to the sum of the lengths of the other two sides and this

gives (1.3). We now give an algebraic proof of (1.3).

Proof of (1.3)

First, we observe that

Re z ≤ |z|.

This follows from the fact that if z = x+ iy, then

x ≤ |x| ≤
√
x2 + y2. (1.4)

Next, observe that

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2).

Hence,

|z1 + z2|2 = z1z1 + (z1z2 + z1z2) + z2z2.

But by (1.4),

z1z2 + z1z2 = 2Re(z1z2) ≤ 2|z1z2| = 2|z1| · |z2|.

Therefore,

|z1 + z2| ≤ |z1|+ |z2|.

corollary 1.1 Let z1 and z2 be complex numbers. Then

||z1| − |z2|| ≤ |z1 − z2|.

Proof

We have |z + w| ≤ |z|+ |w|. Take z = z2, w = z1 − z2. Then

|z1| ≤ |z2|+ |z1 − z2|.

Interchanging z1 and z2, we find that

|z1| − |z2| ≥ −|z2 − z1|
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and this completes the proof.

Note that if we treat z1 and z2 as points on the complex plane, then the

“vector” formed by z1 and z2 beginning with z1 has “position vector” determined

by z2 − z1. This vector has length |z2 − z1| and this is the distance between z1

and z2.

example 1.7 Show that if |z| = 2 then

|Im (1− z + z2)| ≤ 6.

Solution

Note that since 1 is real,

Im (1− z + z2) = Im (−z + z2).

We have shown in the proof of the triangle inequality that |Re z| ≤ |z|. The same

is true when we replace Re by Im. Hence we conclude that

|Im (1− z + z2)| = |Im (−z + z2)| ≤ | − z + z2| ≤ |z|+ |z|2 = 6.

example 1.8 Let z, w, u, v ∈ C with |u| 6= |v|. Show that

Re(z + w)

|u+ v|
≤ |z|+ |w|
||u| − |v||

.

Solution

Since

Re(z + w) ≤ |z + w| ≤ |z|+ |w|

and

||u| − |v|| = ||u| − | − v|| ≤ |u− (−v)| = |u+ v|,

the inequality follows.

1.6 The polar representation of complex numbers

Given a point in the plane which is not the origin, we may represent the point us-

ing polar coordinate system rather than the usual rectangular coordinate system.

Let (x, y) be a point in the first quadrant. Then the complex number z = x+ iy

can be written as

z = r(cos θ + i sin θ).
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We will write

cis θ = cos θ + i sin θ.

y

x

z

r

θ

When z is not in the first quadrant, we use the more general definitions of

sine and cosine for obtuse angles and negative angles. This allows us to write in

general,

z = r cis θ.

Note that θ is not unique since sinx and cosx are both periodic with period

2π.

Given z, we use arg z to denote the set {θ|z = rcis θ}. This set is an equiva-

lence class obtained from the equivalence relation u ∼ v if and only if u = v+2kπ

for some integer k. The principal value of arg z, denoted by Argz , is the rep-

resentative of arg z that lies in (−π, π].

example 1.9 Let z = i. Determine |z|, arg z, Arg z and express z in polar

coordinates.

Solution

The answers are |z| = 1, arg z = {π/2+2kπ, k ∈ Z}, Arg z = π/2, and i = cis
π

2
.

example 1.10 Sketch the following regions representing the following sets in

a complex plane:

(a) {z|Re z > 0}
(b) {z| − π/3 < Arg z < π/3}
(c) {z||z + 1| < 1}

theorem 1.2 Let z = r cis θ and w = s cisψ. Then

zw = rs cis (θ + ψ).
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that is,

|zw| = |z||w|

and

arg zw = arg z + argw. (1.5)

Here, the addition of arg z and argw is defined as {θ + ψ|zw = rscis(θ + ψ)}
and (1.5) means that

Arg(zw) = Arg z + Argw + 2kπ

for some integer k.

Proof

We have

zw = rs(cos θ + i sin θ)(cosψ + i sinψ)

= rs(cos θ cosψ − sin θ sinψ + i(cos θ sinψ + sin θ cosψ))

= rs(cos(θ + ψ) + i sin(θ + ψ)),

where we have used the standard sine and cosine formula for addition of angles,

namely,

cos(θ + ψ) = cos θ cosψ − sin θ sinψ

and

sin(θ + ψ) = cos θ sinψ + sin θ cosψ.

Using induction, we deduce that

corollary 1.3 Let z1, z2, · · · , zn ∈ C. Then

|z1z2 · · · zn| = |z1| · |z2| · · · |zn|,

and

arg (z1z2 · · · zn) = arg z1 + · · ·+ arg zn.

In Corollary 1.3, we let z1 = z2 = · · · = z and conclude that

corollary 1.4 Let n be an integer. Then

(cis θ)n = cisnθ.
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Remark 1.4 The relation in Theorem 1.4 holds only for integers. It is not true

for rational numbers as one would encounter the notion of multi-valued function

such as (cosx+ i sinx)
1/n

, n ∈ Z.

example 1.11 Find all complex numbers z satisfying z3 = 1.

Solution

Write 1 = cos θ + i sin θ where θ = 2kπ, k ∈ Z. Write z = r(cosψ + i sinψ). By

Corollary 1.4,

z3 = r3 (cos 3ψ + i sin 3ψ) .

Since z3 = 1, we conclude that r = 1 and 3ψ = 2kπ, k ∈ Z. Therefore, ψ =

2kπ/3, k ∈ Z. This gives rise to three distinct solutions of ψ in (−π, π] and they

are −2π/3, 0, and 2π/3.

example 1.12 Let 0 < θ < π. Derive the Lagrange’s trigonometric identity

1 + cos θ + cos 2θ + · · ·+ cosnθ =
1

2
+

sin ((2n+ 1)θ/2)

2 sin (θ/2)
.

Solution

The left hand side is

Re (1 + z + z2 + · · ·+ zn) = Re

(
zn+1 − 1

z − 1

)
,

where z = cos θ + i sin θ. Now, observe that

zn+1 − 1

z − 1
=

(zn+1 − 1)(z − 1)

|z − 1|2

=
zn − z + 1− zn+1

2(1− cos θ)
,

where we have used the fact that zz = 1. Hence,

Re

(
zn+1 − 1

z − 1

)
= Re

(
zn − z + 1− zn+1

2(1− cos θ)

)
=

cosnθ − cos θ + 1− cos(n+ 1)θ

2(1− cos θ)

=
1

2
+

1

4 sin2(θ/2)
(cos(nθ)− cos((n+ 1)θ)) .

The identity we want to prove now follows using

cos(nθ)− cos((n+ 1)θ) = −2 sin((2n+ 1)θ/2) sin(−θ/2).
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Remark 1.5 There is another way of proving the above identity. One needs

only to observe that for positive integer `,

sin (θ/2) cos `θ =
1

2
(sin ((`+ 1/2)θ)− sin((`− 1/2)θ))

and that
n∑
`=1

sin (θ/2) cos `θ =
1

2
(sin ((n+ 1/2)θ)− sin (θ/2)) .

1.7 Sets in the complex plane

When we study the real numbers, we define objects such as open intervals, closed

intervals and bounded sets. In this section, we give definitions to analogous ob-

jects for the complex numbers. Most of these definitions look intimidating at

first sight but they define very natural objects.

1. A circle of radius r > 0 centered at z0 is the set

C(z0; r) := {z| |z − z0| = r}.

y

x

rz0

2. A ball of radius r and center z0 is the set

B(z0; r) := {z| |z − z0| < r}.
y

x

rz0

The dotted line is used to indicate that the circle |z − z0| = r is not in the

set B(z0; r).



1.7 Sets in the complex plane 15

3. A subset S of C is said to be open in C if for any z ∈ S there exist a δ > 0

such that B(z; δ) ⊂ S. We also say that S is an open set.

y

x

A ball of radius r with center z0 is an open set.

The set

S = {z| − π

4
< Arg z <

π

4
}

is open. In general, one may visualize open sets in C as shaded regions with

dotted boundaries.

There are sets which are not open. Examples of such sets are C(z0; r) and

{z|Re z ≥ 1}.
4. For any set S, let

Sc = C\S = C− S

be the complement of S in C, that is,

Sc = {z ∈ C|z 6∈ S}.

A subset S of C is said to be closed if the complement of S in C, denoted

by Sc, is open. Examples of closed sets are C(z0; r) and {z|Re z ≥ 1}. The

following illustrates an example of a closed set:

y

x

Remark 1.6 A set S that is not open is not necessarily closed. The set

{0 ≤ Re z < 1} is one such example.

5. Let S be a subset of C. The set of points B with the property that every

open ball of the form B(z0; r), with z0 ∈ B, has non-empty intersection with

S and Sc. The set B is called the boundary of S and the notation for this set

is ∂S.
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6. A set S is bounded if it is contained in a ball B(0;M) for some M > 0.

7. Let [z1, z2] denotes the line segment with endpoints z1 and z2. A polygonal

line is a finite union of line segments of the form

[z0, z1] ∪ [z1, z2] ∪ · · · ∪ [zn−1, zn].

If any two points of S can be connected by a polygonal line contained in

S, S is said to be polygonally connected. The following set is an example of a

polygonally connected set.

y

x

8. A nonempty open polygonally connected set in C will be called a region.

In this course, we will study functions defined on a region.

9. A set S in C is said to be disconnected if there exist two disjoint open sets

A and B in C such that S = (S ∩ A) ∪ (S ∩ B) and that neither A nor B

above contains S. If S is not disconnected it is said to be connected (see the

following diagrams).

y

x

Connected set

y

x

Disconnected set

Remark 1.7 It can be shown that in C, an open set is polygonally connected

if and only if it is connected. For more details see [p. 54, Ahlfors]. The usual

definition of a region is a non-empty open connected set.
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1.8 Appendix: Set of complex numbers as topological space

I hope students will read this section. It is my attempt to introduce topological

spaces.

definition 1.6 A topological space T = {A, T } consists of a non-empty set

A together with a fixed collection T of subsets satisfying

(T1) A, φ ∈ T
(T2) the intersection of any two sets in T is again in T
(T3) the union of any collection of sets in T is again in T .

The collection T is called a topology for A and the members of T are called

the open sets of T .

example 1.13 Let A = {a, b} and T = {A, φ, {a}}. Then (A, T ) is a topolog-

ical space.

As one can see from the example, topological space can be very strange.

In the case of complex numbers, we declare set U to be “open in C” if for

each z ∈ U , then there exists an ε > 0 such that B(z; ε) ⊂ U . (Note that we are

NOT saying that all examples of open sets must arise from this definition. See

the above example.)

We let T to be the collection of “open sets U in C”. We now check that (C, T )

is a topological space. Note that (T1) is clearly satisfied.

For (T2), let U1 and U2 be open set in C. Let z ∈ U1 ∩ U2. Then z ∈ U1 and

z ∈ U2. Since U1 is open in C, there exists an ε1 > 0 such that B(z; ε1) ⊂ U1.

Similarly, since U2 is open in C, there exists an ε2 > 0 such that B(z; ε2) ⊂ U2.

Choose ε = min(ε1, ε2). Then B(z; ε) ⊂ U1 ∩ U2 and therefore, U1 ∩ U2 is open.

For condition (T3), if z is in a union of open sets, say A, where

A =
⋃
i

Ui,

then z ∈ U1, say. Since U1 is open in C, there exists an ε > 0 such that

B(z; ε) ⊂ U1 ⊂ A.

Hence, A is open and ⋃
i

Ui ∈ T .

In conclusion, we have (C, T ) is a topological space.
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2.1 Functions of a complex variable

When we first encounter real numbers, we define a function on S ⊂ R as a rule

that assigns to each x ∈ S, a unique real number y ∈ R. For example the rule

f(x) = x2 sends a real number to its square.

In a similar manner, we define a function on a set S ⊂ C to be a rule that

assigns z ∈ S, a complex number w ∈ C. The number w is called the value of f

at z or image of z under f and is denoted by

w = f(z).

The set S is called the domain of definition of f . A function f is sometimes

referred to as a single-valued function because f sends each z in its domain of

definition to exactly one number. There are rules which assign a complex number

z to more than one number. We referred to such a rule as a multi-valued function.

Examples of multi-valued functions are z1/2 and z1/3, where z1/2 and z1/3 are

complex numbers u satisfying

u2 = z and u3 = z,

respectively. The rule arg(z) that assigns z to the set of angles θ (viewed as a real

number embedded in C) satisfying z = rcis(θ) is a multi-valued function. In this

course, we concentrate on rules that assign z to a unique complex number w =

f(z). In other words, we assume that our rules are functions or more precisely,

single-valued functions. We will return to multi-valued functions when we discuss

the “complex version” of log.

To define a function, both the domain of definition and the rule must be given.

The function

f(z) =
1

z

is defined on C\{0} since f(z) is not defined at 0.
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example 2.1 Let f(z) = z2. Note that in terms of x and y coordinate,

f(z) = (x+ iy)2 = x2 − y2 + 2ixy.

Suppose w = u + iv is the value of a function of f(z) at z = x + iy. Then u

and v depend on the real variables x and y and we find that

f(z) = w = u(x, y) + iv(x, y).

example 2.2 When f(z) = z2,

f(x+ iy) = (x+ iy)2 = x2 − y2 + 2ixy.

This implies that u(x, y) = x2 − y2 and v(x, y) = 2xy.

example 2.3 Let f(z) = z3. Then

f(x+ iy) = (x+ iy)3 = x3 − 3xy2 + i(3x2y − y3).

This implies that

u(x, y) = x3 − 3xy2 and v(x, y) = 3x2y − y3.

example 2.4 Let f(z) =
1

1− |z|2
=

1

1− x2 − y2
. Then

u(x, y) =
1

1− x2 − y2
and v(x, y) = 0.

example 2.5 Let

f(z) =
z

z + z̄
=
x+ iy

2x
.

Then

u(x, y) =
1

2
and v(x, y) =

y

2x
.
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2.2 Limits

In the case of a real variable, we say that

lim
x→x0

f(x) = w0

if for every ε > 0, there exists a δε > 0 such that

|f(x)− w0|R < ε whenever 0 < |x− x0|R < δε.

In the case of complex variable, the definition is similar.

definition 2.1 We say that

lim
z→z0

f(z) = w0

if and only if for every ε > 0, there exist a δε > 0 such that

|f(z)− w0| < ε whenever 0 < |z − z0| < δε.

Sometimes, we write

(z)→ w0 for z → z0

to represent

lim
z→z0

f(z) = w0.

If w0 is∞, we write f(z)→∞ for z → z0 if for every M > 0, there exist δM > 0

such that

|f(z)| > M whenever 0 < |z − z0| < δM .

We also write f(z) → ∞ for z → ∞ if for every M > −, there exist KM > 0

such that

|f(z)| > M whenever |z| > KM .

example 2.6 Let f(z) =
iz

2
. Show that

lim
z→1

f(z) =
i

2
,

using the definition of limit.

To show that the above holds, we need to show that for each ε > 0, there exist
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a δε > 0 such that ∣∣∣∣ iz2 − i

2

∣∣∣∣ < ε whenever 0 < |z − 1| < δε.

We usually work ”backwards” to obtain our δε. Let ε > 0 be arbitrarily chosen.

Now, ∣∣∣∣ iz2 − i

2

∣∣∣∣ < ε

if and only if ∣∣∣∣ i2
∣∣∣∣ |z − 1| < ε

if and only if

0 < |z − 1| < 2ε

since |i| = 1. Hence, we may take our δε to be 2ε. Therefore, f(z) → i

2
when

z → 1.

example 2.7 Show that the limit of the function f(z) =
z

z
as z → 0 does not

exist.

Solution

Let z = 0 + it and we see that z/z = −it/it tends to −1 as z tends to 0 along

the imaginary axis. Let z = t and z/z tends to 1 as z tends to 0 along the real

axis. Hence, the limit of z/z does not exist as z tends to 0.

example 2.8 Let f(z) = 1/z. Then

lim
z→0

f(z) =∞.

We say that f(z) has a pole at z = 0.

example 2.9 Let

P (z) = anz
n + an−1z

n−1 + an−2z
n−2 + · · ·+ a1z + a0

with aj ∈ C. Show that P (z)→∞ as z →∞.
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Solution

Let n ≥ 1 be an integer and

P (z) = a0 + a1z + · · ·+ an−1z
n−1 + anz

n,

with an 6= 0. If n = 1, then it is clear that

|a1z + a0| > (|a1||z| − |a0|)→∞ if |z| → ∞.

Now, let n > 1. Let A = max0≤i≤n−1(|ai|). Then

|P (z)| ≥ |anzn| − |an−1z
n−1 − · · · − |a0| ≥ |anzn| −A

(
|z|n−1 + · · ·+ |z|+ 1

)
.

Since |z| → ∞, we may assume |z| > 1. This implies that

|P (z)| ≥ |anzn| − nA|z|n−1 = |z|n−1 (|anz| − nA) > M,

whenever

|z| > max

(
1,
nA+ 1

|an|
,M1/(n−1)

)
.

2.3 Theorems on Limits

Most of the results in this section are familiar as they also appear in the same

form in Calculus and Real Analysis.

If

lim
z→z0

f(z) = A and lim
z→z0

g(z) = B,

then

lim
z→z0

(f(z) + g(z)) = A+B. (2.1)

The proof of this is similar to that for real variable.

Suppose f(z)→ w0 as z → z0, then

lim
z→z0

Re f(z) = u0

and

lim
z→z0

Im f(z) = v0,

where w0 = u0 + iv0. This is because for ε > 0, there exists δε > 0 such that

|f(z)− w0| < ε whenever 0 < |z − z0| < δε.

Now, observe that

|f(z)− w0| = |f(z)− w0|
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and hence, we find that f(z)→ w0. Now,

Re(f(z)) =
f(z) + f(z)

2
.

Therefore, by (2.1)

lim
z→z0

Re(f(z)) =
w0 + w0

2
= Re(w0) = u0.

Similarly,

lim
z→z0

Im(f(z)) = Im(w0) = v0.

Conversely, if f(z) = u(x, y) + iv(x, y) and F (z) := u(x, y) → u0 and G(z) =

v(x, y)→ v0 (Note that 2x = z+z and 2iy = z−z and so, u(x, y) and v(x, y) are

functions of z.) as z → z0, then by (2.1), we deduce that f(z) = F (z) + iG(z)→
u0 + iv0 as z → z0. We have thus proved the following theorem :

theorem 2.1 Suppose f(z) = u(x, y) + iv(x, y), z0 = x0 + iy0, w0 = u0 + iv0.

Then

lim
z→z0

f(z) = w0,

if and only if

lim
(x,y)→(x0,y0)

u(x, y) = u0 and lim
(x,y)→(x0,y0)

v(x, y) = v0.

theorem 2.2 Suppose limz→z0 f(z) = A and limz→z0 g(z) = B. Then

(a) limz→z0 f(z)g(z) = AB;

(b) If B 6= 0, then limz→z0 f(z)/g(z) = A/B.

2.4 Continuity

definition 2.2 A function f(z) is said to be continuous at z0 if

(a) limz→z0 f(z) exists,

(b) f(z0) exists, and
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(c) limz→z0 f(z) = f(z0).

Statement (c) says that for every ε > 0 there exist a δε such that

|f(z)− f(z0)| < ε whenever |z − z0| < δε.

In other words, f(z) is continuous at z0 if we obtain the limit limz→z0 f(z) by

simply substituting z0 into f(z).

definition 2.3 A function f(z) is said to be continuous in a domain D if it

is continuous at every point in D.

Theorem 2.1 says that f(z) = u(x, y) + iv(x, y) is continuous at z0 = x0 + iy0 if

and only if the corresponding real and imaginary parts are continuous at (x0, y0),

i.e.,

lim
(x,y)→(x0,y0)

u(x, y) = u(x0, y0), and lim
(x,y)→(x0,y0)

v(x, y) = v(x0, y0).

Hence we may decide if a complex valued function f(z) is continuous at any

point z0 by using known results in Calculus of two variables.

example 2.10 The function f(z) = xy2+i(2x−y) is continuous at every point

(x, y) since the corresponding real and imaginary parts are continuous functions

of two variables.

As in the case of real variables, we have the fact that if f(z) and g(z) are

continuous, then the functions f(z) + g(z), f(z)g(z), f(z)/g(z) and f(g(z)) are

continuous in the domain for which the functions are defined.

example 2.11 The polynomial P (z) = a0 + a1z+ · · ·+ anz
n is continuous for

all z ∈ C.

Solution

The function z is continuous implies that z2 is continuous since product of con-

tinuous functions is continuous. By induction, zk is continuous for all positive

integers k. Now, sum of continuous functions is continuous, hence every polyno-

mial in z is continuous.
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example 2.12 Show that if f(z) is continuous at z0 then |f(z)| is continuous

at z0.

Solution

By triangle inequality,

|f(z)| − |f(z0)| < |f(z)− f(z0)|

and

|f(z0)| − |f(z)| < |f(z)− f(z0)|.

Hence,

||f(z)| − |f(z0)|| ≤ |f(z)− f(z0)|.

The result follows since

|f(z)− f(z0)| < ε

implies that

||f(z)| − |f(z0)|| < ε.

Remark 2.1 Strictly speaking, |f | is a function from C to R. However, we may

identify this function with F = |f |+ i · 0 and conclude that F is continuous on

C.

Remark 2.2 The notion of continuity can be generalized to arbitrary topological

spaces other than C. In order to achieve that, one has to define continuous

function based on open sets instead of open balls. For more details, see the

Appendix.

2.5 Derivative

The derivative of a function f at a (in the real variable case), denoted by f ′(a),

is defined as the limit (if it exists)

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

For the case of complex variable, the definition is similar :
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definition 2.4 The derivative of a function f at z, denoted by f ′(z), is defined

as the limit (if it exists)

f ′(a) = lim
z→a

f(z)− f(a)

z − a
.

We may also write

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

example 2.13 Show that the function

f(z) = z

is not differentiable at any point z.

Solution

Observe that

z + h− z
h

=
h

h
.

By Example 2.7, we find that

lim
h→0

h

h

does not exist and so f(z) is not differentiable at any point z.

example 2.14 For a given z0 ∈ C, discuss the differentiability of f(z) = |z|2
at z = z0.

Solution

Observe that

|z + h|2 − |z|2

h
=

(z + h)(z + h)− zz
h

=
hz + hz + hh

h

= z + z
h

h
+ h.
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If z = 0, then the limit exists and f ′(0) = 0. If z 6= 0 and h = σ ∈ R, then we

find that

z + z
σ

σ
+ σ → z + z as σ → 0.

Similarly, if h = it with t ∈ R, then

z + z
it

it
+ it→ z − z as t→ 0.

In other words, if z 6= 0, the limit lim
h→0

|z + h|2 − |z|2

h
does not exist. In conclu-

sion, the derivative of f(z) is defined only at z = 0.

Note that both functions z and |z|2 are continuous functions on C. But f(z) =

z is not differentiable everywhere while f(z) = |z|2 is differentiable only at

z = 0. It turns out that as in the case of real variable, differentiable functions

are continuous. The proof is exactly the same as that for the real variable case.

The rules for differentiating a complex valued functions are the same as those

for real variables. This is because the definitions for f ′(x) and f ′(z) are similar.

(For example, to prove that f ′(z) = 2z when f(z) = z2, the proof is similar to

functions on real numbers.) As such, we leave it as an exercise for the readers to

prove the following standard results for differentiation:

1.
d

dz
c = 0

2.
d

dz
zn = nzn−1, n ∈ Z+

3.
d

dz
(f(z) + F (z)) = f ′(z) + F ′(z)

4.
d

dz
(f(z)F (z)) = f(z)F ′(z) + f ′(z)F (z)

5. (Chain Rule) If F (z) = g(f(z)), then
d

dz
F (z) = g′(f(z))f ′(z).

2.6 Cauchy-Riemann equations

We first recall the definition of partial derivatives. If F (x, y) is a function of two

real variables then

∂F

∂x
= lim
δx→0

F (x+ δx, y)− F (x, y)

δx

whenever the limit exists. Similarly,

∂F

∂y
= lim
δy→0

F (x, y + δy)− F (x, y)

δy
.

We recall that

f ′(z) = lim
h→0

f(z + h)− f(z)

h
.
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If the above limit exists, then regardless of how h approaches 0, the resulting

value would be the same. We now let h approaches 0 along the real axis. Write

h = δx. Write f = u(x, y) + iv(x, y). Let h = δx. Then

f(z + h)− f(z)

h
=
u(x+ δx, y) + iv(x+ δx, y)− u(x, y)− iv(x, y)

δx
.

Therefore,

f ′(z) =
∂u

∂x
+ i

∂v

∂x
.

Next, we let h approaches 0 along the imaginary axis. Write h = iδy,, we have

f(z + h)− f(z)

h
=
u(x, y + δy) + iv(x, y + δy)− u(x, y)− iv(x, y)

iδy
.

Therefore,

f ′(z) = −i∂u
∂y

+
∂v

∂y
.

Hence,

f ′(z) =
∂u

∂x
+ i

∂v

∂x
.

and

f ′(z) = −i∂u
∂y

+
∂v

∂y
.

We conclude that the Cauchy-Riemann equations hold, namely,

ux = vy and vx = −uy,

where Ft =
∂F

∂t
.

example 2.15 Verify that the function f(z) = z4 satisfies the Cauchy-

Riemann equations. (This is not surprising since all polynomials in z are dif-

ferentiable and hence, Cauchy-Riemann equations are satisfied.)

Solution

In this case, u(x, y) = x4 − 6x2y2 + y4 and v = 4x3y − 4y3x. One checks easily

that u and v satisfy the Cauchy-Riemann equations.

Remark 2.3 Note that we can create infinitely many functions u and v satisfying

the Cauchy-Riemann equations by considering functions of the form zn, where

n is any positive integer.
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example 2.16 Suppose f(z) = e−y sinx+iv(x, y) is differentiable everywhere.

Find v(x, y).

Solution

Let u = e−y sinx. Then ux = e−y cosx. Since the function is differentiable

everywhere, the Cauchy-Riemann equations must be satisfied. Hence,

vy = ux = e−y cosx.

We conclude that

v = −e−y cosx+ C(x),

where C(x) is a function of x.

Next, uy = −e−y sinx. Hence

vx = e−y sinx.

Therefore,

v = −e−y cosx+D(y),

where D(y) is a function of y. But C(x) = D(y) implies that C(0) = D(y) for

all y ∈ R and so, D(y) is a constant. Therefore, C(x) = D(y) = a with a ∈ C.

We therefore conclude that

f(z) = e−y sinx− ie−y cosx+ ia.

We have seen that if f = u+ iv and f is differentiable at z = z0, then u and

v satisfies the Cauchy-Riemann equation at z0 = x0 + iy0. We can use this to

show that a function is NOT differentiable at z = z0.

example 2.17 Show that if z 6= 0, then f(z) = 2xy + i(x2 − y2) is not

differentiable.

Solution

Let u = 2xy and v = x2−y2. If f(z) is differentiable at z, then ux = vy. But this

implies that y = 0. Similarly, if uy = −vx then x = 0. Since z 6= 0, we conclude

that f(z) is not differentiable at z.

example 2.18 Show that the function f(z) = z is not differentiable at any

point z.
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Solution

Now, f(z) = x− iy. Hence, u = x and v = −y. But ux = 1 and vy = −1 implies

that ux 6= vy and therefore, f(z) is not nowhere differentiable.

example 2.19 Find z for which f ′(z) exists when f(z) = ex cos y − iex sin y.

Solution

Let u(x, y) = ex cos y and v(x, y) = ex sin y. If f ′(z) exists then Cauchy-Riemann

equations hold. So ux = vy and uy = −vx yield cos y = 0 and sin y = 0. But this

is impossible since sin2 y+ cos2 y = 1. Therefore, f(z) is not differentiable for all

z ∈ C.

We return to the following statement :

If f = u + iv and f is differentiable at z = z0, then u and v satisfies the

Cauchy-Riemann equation at z0 = x0 + iy0.

The converse, however, is false. In other words, if u and v satisfies the Cauchy-

Riemann equation at z = z0, it does not imply that f is differentiable at z = z0.

example 2.20 Consider the following example : Let

f(z) = f(x, y) =


xy(x+ iy)

x2 + y2
z 6= 0

0 z = 0.

Show that the Cauchy-Riemann equations are satisfied at z = 0 but f is not

differentiable at z = 0.

Solution

We first show that f(z) is not differentiable at z = 0. Note that

f(z)− f(0)

z
=

(
xy(x+ iy)

x2 + y2
− 0

)
1

x+ iy
=

xy

x2 + y2
.

Letting z = h+ ih, we find that

f(z)− f(0)

z
=

h2

2h2
→ 1

2

as h→ 0. Letting z = h+ i · 0, we find that

f(z)− f(0)

z
→ 0

as h→ 0. Therefore

lim
z→0

f(z)− f(0)

z
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does not exist and f is not differentiable at z = 0.

We first note that

u =
x2y

x2 + y2
and v =

xy2

x2 + y2
.

This implies that u(h, 0) = 0 and that

u(h, 0)− u(0, 0)

h
= 0.

Similarly, v(0, h) = 0 and

v(0, h)− v(0, 0)

h
= 0.

Therefore, ux(0, 0) = 0 = vy(0, 0). In a similar way, vx(0, 0) = vy(0, 0) =

0. Therefore, Cauchy-Riemann equations are satisfied at z = 0 but f is not

differentiable at z = 0.

theorem 2.3 Let f(z) = u(x, y) + iv(x, y). Suppose ux, uy, vx, vy exist in a

neighborhood of z. Then if ux, uy, vx, vy are continuous at z and the Cauchy-

Riemann equations hold, i.e.,

ux = vy, uy = −vx,

then f is differentiable at z.

Proof

The proof of this theorem depends on mean value theorem. We recall that if F

is a function of a real variable differentiable on [a, b], then

F (b)− F (a) = F ′(ξ)(b− a).

We next write

f(z) = u(x, y) + iv(x, y).

Then

f(z + δz) = f(x+ δx+ i(y + δy)) = u(x+ δx, y + δy) + iv(x+ δx, y + δy).

This implies that

f(z + δz)− f(z)

δz
(2.2)

=
u(x+ δx, y + δy)− u(x, y)

δx+ iδy
+ i

v(x+ δx, y + δy)− v(x, y)

δx+ iδy
.

We now apply mean value theorem to the expression on the left hand side of

(2.2) which involves only u(x, y) and deduce that
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u(x+ δx, y + δy)− u(x, y)

δx+ iδy

=
u(x+ δx, y + δy)− u(x, y + δy) + u(x, y + δy)− u(x, y)

δx+ iδy

= ux(x+ θ1, y + δy)

(
δx

δx+ iδy

)
+ uy(x, y + θ2)

(
δy

δx+ iδy

)
,

where (θ1, θ2)→ (0, 0) as (δx, δy)→ (0, 0).

Similarly, applying mean value theorem to the expression on left hand side of

(2.2) which involves only v(x, y), we deduce that

v(x+ δx, y + δy)− v(x, y)

δx+ iδy

= vy(x, y + θ3)

(
δy

δx+ iδy

)
+ vx(x+ θ4, y + δy)

(
δx

δx+ iδy

)
,

where (θ3, θ4)→ (0, 0) as (δx, δy)→ (0, 0). Thus,

f(z + δz)− f(z)

δz
=

δy

δx+ iδy
(uy(x, y + θ2) + ivy(x, y + θ3))

+
δx

δx+ iδy
(ux(x+ θ1, y + δy) + ivx(x+ θ4, y + δy)) .

Now, using ux = vy and uy = −vx, we conclude that

f(z + δz)− f(z)

δz
− (ux + ivx)

=
δy

δx+ iδy
(uy(x, y + θ2)− uy(x, y) + ivy(x, y + θ3)− ivy(x, y))

+
δx

δx+ iδy
(ux(x+ θ1, y + δy)− ux(x, y) + ivx(x+ θ4, y + δy)− ivx(x, y)) .

Since ∣∣∣∣ δx

δx+ iδy

∣∣∣∣ ≤ 1 and

∣∣∣∣ δy

δx+ iδy

∣∣∣∣ ≤ 1,

we have∣∣∣∣f(z + δz)− f(z)

δz
− (ux + ivx)

∣∣∣∣
≤ |(uy(x, y + θ2)− uy(x, y)|+ |vy(x, y + θ3)− vy(x, y)|

+ |ux(x+ θ1, y + δy)− ux(x, y)|+ |vx(x+ θ4, y + δy)− vx(x, y)| ,

which tends to 0 as (δx, δy)→ 0, since (θ1, θ2, θ3, θ4)→ (0, 0, 0, 0) as (δx, δy)→
(0, 0) and ux, uy, vx, vy are all continuous. Hence,

lim
δz→0

f(z + δz)− f(z)

δz

exists and equals to ux + ivx.
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example 2.21 Show that g(z) = 3x2+2x−3y2−1+i(6xy+2y) is differentiable

for every z ∈ C. Write g(z) in terms of z.

Solution

By the above theorem, it suffices to verify that ux = vy and vx = −uy and that

these are continuous functions. To express g(z) as a function of z, set x = (z+z)/2

and y = (z − z)/(2i). The final answer is g(z) = 3z2 + 2z − 1. Note that since

g(z) is a polynomial, we have another proof of the fact that g(z) is differentiable

for every z ∈ C.

2.7 Analytic functions

definition 2.5 A function f is analytic at z if f is differentiable in a neigh-

borhood of z. A function f is analytic on a set S if f is analytic at every z ∈ S.

example 2.22 Polynomials are analytic on C since their derivatives exist at

every z ∈ C.

example 2.23 The function f(z) = |z|2 is differentiable only at z = 0 and

hence, it is not analytic at z = 0.

example 2.24 If f = u+ iv is analytic in a region D and u is constant, show

that f is a constant.

Solution

If u is a constant, then ux = uy = 0. By Cauchy Riemann equations, vx = vy = 0.

This implies that v = s(x) = t(y) and hence v must also be a constant. Therefore

f is a constant.

example 2.25 In calculus, we know that if f ′(x) = 0 on (a, b) then f(x) is

a constant on (a, b). Is this true for analytic functions in C? In other words, if

f ′(z) = 0, is f(z) necessarily a constant?
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Solution

The result is true. Let f(z) = u+ iv. Suppose

f ′(z) = ux + ivx = vy − iuy = 0.

This implies that ux = uy = 0 or u = g(y) = h(x) for some functions g and

h. Since x and y are independent variables, we find that u = g(y) = h(x) = a,

where a is a constant in R. By the previous example, we conclude that f = u+iv

is a constant.

example 2.26 If f is analytic in a region and if |f | is constant there, show

that f is a constant.

Solution

Suppose |f | is a constant. If |f | = 0 then u = 0 and v = 0. Suppose |f | 6= 0.

Then |f |2 = u2 + v2 = c where c is a constant. This implies that

uux + vvx = 0 (2.3)

and

uuy + vvy = 0. (2.4)

Using the Cauchy Riemann equations ux = vy and uy = −vx, we rewrite (2.3)

and (2.3) and (2.4) as

uux − vuy = 0 (2.5)

and

uuy + vux = 0. (2.6)

Eliminating uy using (2.5) and (2.6), we conclude that

ux(u2 + v2) = 0.

Since |f |2 is a non-zero constant, we find that ux = 0. Solving uy in a similar

way, we conclude that uy = 0. This implies that u = s(y) = t(x) and so, u is a

constant. By Example 2.24, we conclude that f is a constant.

2.8 The exponential function

definition 2.6 A function which is analytic on the whole of C is said to be

entire.
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example 2.27 Find an entire function f(z) which satisfies the conditions

f(z + w) = f(z)f(w) (2.7)

and

f(x) = ex, when x ∈ R. (2.8)

Solution

Let z = x+ iy. Then by (2.7),

f(z) = f(x)f(iy) = exf(iy) = ex(A(y) + iB(y))

for some functions A(y) and B(y).

Now, since f is analytic, Cauchy Riemann equations are satisfied and with

u = exA(y) and v = exB(y), we have ux = vy and uy = −vx implies that

A(y) = B′(y) and A′(y) = −B(y)

respectively. This implies that

A′′(y) +A(y) = 0.

Similarly

B′′(y) +B(y) = 0.

Let g(y) be a function satisfying

g′′(y) + g(y) = 0.

It is immediate that sin y and cos y are two linearly independent solutions of

the above differential equations. Since A(y) and B(y) are also solutions of the

differential equations, we conclude that

A(y) = α cos y + β sin y

and

B(y) = γ cos y + δ sin y

for some constants α, β, γ and δ.

With the expression for A(y), we deduce that

B(y) = −A′(y) = −β cos y + α sin y.

Since f(x) = ex, we conclude that A(0) = α = 1. Also, B(0) = 0 = −β.

Therefore,

A(y) = cos y and B(y) = sin y.

Hence,

f(z) = ex (cos y + i sin y) .
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The function f extends ex and is entire. We write f(z) as ez.

Note that if we compare ez = ex+iy with ex(cos y + i sin y), then we see that

eiy = cos y + i sin y.

Therefore,

sin y =
eiy − e−iy

2i
and cos y =

eiy + e−iy

2
.

As in the case of ex, we may define sine and cosine with variables z ∈ C as

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
.

Remark 2.4 We have assumed that A(y) and B(y) are linear combinations

of sin y and cos y and that the expressions for A(y) and B(y) are unique. For

more information on the uniqueness of solutions of differential equations with

initial conditions, see Chapter 3 (pp. 62-80) of E.L.Ince’s “Ordinary differential

equations”.

example 2.28 Show that

dez

dz
= ez,

d sin z

dz
= cos z and sin(z + w) = sin z cosw + sinw cos z.

2.9 Harmonic functions

Let f(z) = u+ iv be an analytic function on a region R. We will show later that

f ′(z) is also an analytic function on the region R. Suppose for the moment, we

assume that

If f is analytic at z, then f ′(z) is analytic at z.

We observe that

f ′(z) = ux + ivx = vy − iuy = Φ + iΨ. (2.9)

Let Φ = ux and Ψ = −uy. Since f ′ is analytic Φx = Ψy. Hence,

uxx = −uyy

and u is harmonic. Similarly, using Φ = vy and Ψ = vx and the fact that

Φy = −Ψx, we deduce that v is harmonic.
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definition 2.7 A real-valued function h(x, y) is said to be harmonic in a

region R if all its second order partial derivatives are continuous in R and if, at

each point of R,

hxx(x, y) + hyy(x, y) = 0.

We sometimes use ∇2h or ∆h to denote hxx + hyy.

We have seen in the beginning of this section that if f is analytic at z then u

and v are harmonic functions.

definition 2.8 Let u be harmonic. If v is a harmonic function satisfying the

Cauchy-Riemann equations

ux = vy and uy = −vx,

then v is called the conjugate harmonic function of u.

example 2.29 Verify that u = xy − x+ y is a harmonic function and find its

harmonic conjugate.

Solution

The verification that u is a harmonic function is straightforward since uxx =

uyy = 0. Now, ux = y − 1 and uy = x + 1. Using Cauchy-Riemann equations,

we find that vy = y − 1 or v = y2/2− y + s(x). Also, −vx = x+ 1 implies that

v = −x2/2− x+ t(y). Now, we must have

−x
2

2
− x− s(x) =

y2

2
− y − t(y) = C

where C is a constant. Hence,

t(y) =
y2

2
− y − C

and

v = −x
2

2
− x+

y2

2
− y − C.

example 2.30 Show that if f = u+ iv is analytic, then u+ v is harmonic.
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Solution

First solution :

(u+ v)xx + (u+ v)yy = uxx + vxx + uyy + vyy = 0.

Second Solution:

Note that f = u + iv and if = v − iu are both analytic. Therefore f + if =

(u+ v) + i(v − u) is analytic and hence u+ v is harmonic.

2.10 Appendix

We motivate the general definition of continuous functions by proving the fol-

lowing :

theorem 2.4 Let f be a surjective function from C to C. The following are

equivalent :

(a) f is continuous

(b) If V is an open set in C, then f−1(V ) is an open set in C, where

f−1(A) = {z ∈ C | f(z) ∈ A}.

Proof

We first show (a) implies (b). We translate continuity of f in terms of open balls.

Observe that f is continuous at z0 if and only if for every ε > 0, there exists

δε > 0 such that

f(B(z0; δε)) ⊂ B(f(z0); ε).

Now, let V be open in C. We must show that f−1(V ) is open in C. Let z0 ∈
f−1(V ). Then f(z0) ∈ V . Since V is open, there exists ε > 0 such that

B(f(z0); ε) ⊂ V.

For this ε > 0, there exists δε > 0 such that

f(B(z0; δε)) ⊂ B(f(z0); ε) ⊂ V,

by continuity of f . This means that

B(z0; δε) ⊂ f−1(B(f(z0); ε)) ⊂ f−1(V ).

Hence f−1(V ) is open.

To show that (b) implies (a). Let f be a function satisfying (b). Let ε > 0
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and since B(f(z0); ε) is open, f−1(B(f(z0); ε)) is open in the domain of f . Since

z0 ∈ f−1(B(f(z0); ε)) and the set is open, there exists δε > 0 such that

B(z0; δε) ⊂ f−1(B(f(z0); ε)),

or

f(B(z0; δε)) ⊂ B(f(z0); ε),

and so f is continuous.

The usual definition for continuous function from X to Y where X and Y are

topological spaces is the following:

definition 2.9 A function f from topological spaces X to Y is continuous if

for every open set V in Y , the set f−1(V ) is open in X.

If X and Y are subsets of C, we can form topological spaces from X and Y by

declaring that the open sets in X and Y are sets of the form O ∩X and O ∩ Y
respectively, with O open in C. We sometimes call such open sets relatively open

sets. I prefer to call sets O ∩X (or O ∩ Y ), O open in C, as sets that are “open

in X” (or “open in Y ”).

We now show the following:

theorem 2.5 If f is a continuous function from X to Y (in the usual sense),

then for every V open in Y , f−1(V ) is open in X.

Proof

The function f is continuous at u means that for every ε > 0, there exists δε > 0

such that

f(B(u; δε)) ⊂ B(f(u); ε).

Suppose V is open in Y . Then V = O ∩ Y where O is an open set of C. Now

f−1(V ) = f−1(O) ∩X.

Let u ∈ f−1(V ). Then f(u) ∈ V and hence, f(u) ∈ O. This implies that there

exists ε > 0 such that

B(f(u); ε) ∩ Y ⊂ O ∩ Y

since O is open. Since f is continuous at u, there exists δ(u) > 0 such that

f(B(u; δ(u)) ∩X) ⊂ B(f(u); ε) ∩ Y.

Hence

B(u; δ) ∩X ⊂ f−1(B(f(u); ε)) ∩X ⊂ f−1(V ).
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Therefore,

f−1(V ) =
⋃

u∈f−1(V )

(B(u; δ(u)) ∩X) =

 ⋃
u∈f−1(V )

B(u; δ)

 ∩X
and this implies that f−1(V ) is open.
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In real analysis, we encounter integrals defined by∫ b

a

f(x)dx

for some interval (a, b). In complex analysis, we have analogue of integrals as

well. We will begin with the simplest type of complex integrals, the line integrals.

3.1 Properties of Line integrals

definition 3.1 Let f(t) = u(t) + iv(t) be any continuous complex valued

function of the real variable t, a ≤ t ≤ b. Then∫ b

a

f(t)dt =

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt.

Note that in general, our f(z) depends on two variables x, y since z = x + iy.

Here, we assume that z is of the form x(t) + iy(t) and consequently, f(z) is a

function of t.

definition 3.2 If x(t), y(t) are continuous on [a, b] and their derivatives x′(t),

y′(t) are continuous on intervals [a, x1], [x1, x2], · · · , [xn−1, b], where

[a, b] =

n−1⋃
i=0

[xi, xi+1], x0 = a, xn = b,

then we say that the curve

z(t) = x(t) + iy(t)

is piecewise differentiable and we set

ż(t) = x′(t) + iy′(t).
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definition 3.3 The curve is said to be smooth if ż(t) 6= 0 except at a finite

number of points.

We will assume smoothness throughout our course unless otherwise stated.

example 3.1 Examples of smooth curves:

(i) z(t) = t+ it2, 0 ≤ t ≤ 2.

y

x

(ii) z(t) = t+
i

t
, 1 ≤ t ≤ 5.

y

x

definition 3.4 Let C be a smooth curve given by z(t), a ≤ t ≤ b, and suppose

f is continuous at all points z(t). Then the integral of f along C is defined by∫
C

f(z)dz :=

∫ b

a

f(z(t))ż(t)dt.

definition 3.5 The two curves

C1 : z(t), a ≤ t ≤ b,
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C2 : w(s), c ≤ s ≤ d,

are smoothly equivalent if there exist a one to one function λ : [c, d] → [a, b]

which has continuous first derivative such that λ(c) = a, λ(d) = b and

w(s) = z(λ(s)).

z(t) w(s)

λ(s)

C

example 3.2 The functions

z(t) = t+ it2, 0 ≤ t ≤ 3

and

w(s) = (s− 1) + i(s− 1)2, 1 ≤ s ≤ 4

give the same curve. Here, λ(s) = s− 1.

theorem 3.1 If C1 and C2 are smoothly equivalent then∫
C1

f(z)dz =

∫
C2

f(z)dz.

Proof

Suppose C1 is given by z(t), t ∈ [a, b] and C2 is given by w(s), s ∈ [c, d], with

λ(s) being a one to one function with continuous first derivative from [c, d] to

[a, b] and

w(s) = z(λ(s)).

Now, ∫
C2

f(w)dw =

∫ d

c

f(w(s))ẇ(s)ds
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=

∫ d

c

f(z(λ(s)))ż(λ(s))λ′(s)ds

=

∫ b

a

f(z(µ))ż(µ)dµ, with µ = λ(s)

=

∫
C1

f(z)dz.

Hence the result.

Remark 3.1 The second equality above follows by splitting the second integral

into real and complex part, apply integral by substitution, and collect the result-

ing integrals. We write the proof as above to show that the result follows from

the substitution µ = λ(s).

definition 3.6 Suppose C is given by z(t), a ≤ t ≤ b. Then −C is defined by

z(b+ a− s), a ≤ s ≤ b.

theorem 3.2 Let C be a smooth curve and f be a continuous complex-valued

function. Then ∫
−C

f(z)dz = −
∫
C

f(z)dz.

Proof

Let w(s) = z(b+ a− s). Then∫
−C

f(w) dw =

∫ b

a

f(w(s))ẇ(s)ds =

∫ b

a

f(z(b+ a− s))ż(b+ a− s)(b+ a− s)′ ds

=

∫ a

b

f(z(t))ż(t)(−1)(−1)dt,

where we let t = b+ a− s and observe that ds = −dt. Therefore,∫
−C

f(w) dw = −
∫ b

a

f(z(t))ż(t)dt = −
∫
C

f(z)dz.

theorem 3.3 Let C be a smooth curve. Let f and g be continuous functions

on C, and let α be any complex number. Then

(a)
∫
C
f(z) + g(z)dz =

∫
C
f(z)dz +

∫
C
g(z)dz,

(b)
∫
C
αf(z)dz = α

∫
C
f(z)dz.
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example 3.3 Set C : z(t) = R cos t+ iR sin t, 0 ≤ t ≤ 2π,R 6= 0. Show that∫
C

1

z
dz = 2πi.

Solution

The curve C is parametrized by z(t) = R cos t+ iR sin t. This implies that ż(t) =

−R sin t+R cos t. Hence∫
C

1

z
dz =

∫ 2π

0

1

R(cos t+ i sin t)
(R(− sin t+ i cos t)) dt

=

∫ 2π

0

(− sin t+ i cos t)(cos t− i sin t)

sin2 t+ cos2 t
dt

=

∫ 2π

0

i dt = 2πi.

Note that the above integral is independent of the radius R of the contour C.

example 3.4 Suppose f(z) = x2 + iy2, and Let C : z(t) = t + it2, 0 ≤ t ≤ 1.

Compute ∫
C

x2 + iy2 dz.

Solution

The curve C is parametrized by C : z(t) = t+ it2, 0 ≤ t ≤ 1. Then ż(t) = 1+2it.∫
C

f(z)dz =

∫ 1

0

(t2 + it4)(1 + 2it)dt =
7i

10
.

The line integral of f(z) over C has properties similar to Riemann integrals.

We state two of them here and leave the proofs as exercises.

example 3.5 Evaluate ∫ i/2

i

eπzdz

where this integral denotes the path (or contour) integral over the straight line

from the point i to i/2.
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Solution

The integral is evaluated as follow:∫ i/2

i

eπzdz =

∫ 1

0

eπ((1−t)i+ti/2) (−i+ i/2) dt

= − i
2

∫ 1

0

eπi(1−t/2)dt

=
i

2

∫ 1

0

e−πit/2dt

=
i

2(−iπ/2)

(
e−iπ/2 − 1

)
=

1

π
(1 + i) .

example 3.6 Show that if n 6= −1 and C is a circle with center 0 and radius

R traversed in the anti-clockwise direction, then∫
C

zndz = 0.

Solution

Let C be parametrized by z(t) = Reit, 0 ≤ t ≤ 2π. Then∫
C

zndz =

∫ 2π

0

RneintiReitdt

= iRn+1

∫ 2π

0

ei(n+1)tdt

= iRn+1

(∫ 2π

0

cos((n+ 1)t)dt+ i

∫ 2π

0

sin((n+ 1)t)dt

)
= 0.

3.2 A generalization of the Fundamental Theorem of Calculus

We begin with two examples.

example 3.7 Show that ∫
C

zdz = 0

by taking C to be
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(a) the upper semicircle (of radius 1, center 0) from −1 to 1 in the clockwise

direction.

(b) the lower semicircle (of radius 1, center 0) from −1 to 1 in the anti-clockwise

direction.

Solution

For (a), we note that ∫
C

zdz =

∫ 0

π

eitieitdt = 0.

For (b), we find that ∫
C

zdz =

∫ 0

−π
eitieitdt = 0.

This example shows that we get the same answer if we change the path joining

i and i/2. In fact, this integral depends only on the end points.

example 3.8 Show that ∫
C

1

z
dz = 0

by taking C to be

(a) the upper semicircle (of radius 1, center 0) from −1 to 1 in the clockwise

direction.

(b) the lower semicircle (of radius 1, center 0) from −1 to 1 in the anti-clockwise

direction.

Solution

For (a), we note that∫
C

1

z
dz =

∫ 0

π

e−itieitdt = i(0− π) = −iπ.

For (b), we find that∫
C

1

z
dz =

∫ 0

−π
e−itieitdt = i(0− (−π)) = iπ.

This example shows that the integral is dependent on the path joining i and

i/2.

In the first example, the integral is the same for (a) and (b) while the second

example shows that there are integral that depends on paths. In the following

theorem, we show the existence of integrals that only depend on the points of a

path and not on the paths joining them.
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definition 3.7 A primitive for f on a region D is a function F that is analytic

on D and such that F ′(z) = f(z) for all z ∈ D.

theorem 3.4 If a continuous function f has a primitive F in a region D and

C is a smooth curve that begins at α and ends at β, then∫
C

f(z)dz = F (β)− F (α).

We emphasize that the above theorem implies that if f(z) = F ′(z) in a region

D where F (z) is analytic in D and if C is any smooth curve from α to β contained

in D, then the integral

∫
C

f(z)dz depends only on end points α and β.

Proof

The proof depends on a complex analogue of the chain rule for differentiation. We

first assume that C is smooth and parametrized by z(t), a ≤ t ≤ b, with z(a) = α

and z(b) = β. We observe that there exists a δ > 0 such that z(t + h) − z(t) is

non-zero whenever |h| < δ. This is because ż(t) 6= 0 implies that |ż(t)| > 0. Let

ε = |ż(t)|/2. Then there exists a δ > 0 such that∣∣∣∣z(t+ h)− z(t)
h

− ż(t)
∣∣∣∣ < |ż(t)|/2

whenever |h| ≤ δ. Using the triangle inequality, we deduce that

|ż(t)| − |(z(t+ h)− z(h))/h| < |ż(t)|/2,

or

|z(t+ h)− z(t)| > h|ż(t)|/2 > 0.

Let γ(t) = F (z(t)). Then since z(t + h) − z(t) is non-zero for |h| < δ, we find

that

γ̇(t) = lim
h→0

F (z(t+ h))− F (z(t))

h

= lim
h→0

F (z(t+ h))− F (z(t))

z(t+ h)− z(t)
· z(t+ h)− z(t)

h
.

Thus,

γ̇(t) = f(z(t))ż(t).

Now, observe that∫
C

f(z) dz =

∫ b

a

f(z(t))ż(t) dt =

∫ b

a

γ̇(t) dt

= γ(b)− γ(a) = F (z(b))− F (z(a)) = F (β)− F (α)
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and the proof of the theorem is complete.

Remark 3.2 If C is only piecewise smooth from α to β, it is a union of finitely

many piecewise smooth curves. We may apply the above result to each of these

smooth segment and the integral over piecewise smooth curve is still dependent

only on α and β.

example 3.9 By finding a primitive for f(z), evaluate∫
[i,i/2]

eπzdz

where [i, i/2] denote the straight path from i to i/2.

Solution

It is known that if F (z) =
eπz

π
, then (this is obtained by the integrating eπx

when x is real)

F ′(z) = eπz.

Hence, ∫
[i,i/2]

eπzdz =
1

π

(
eπi/2 − eπi

)
.

Remark 3.3 The integral
∫
C(0;R)

zndz is always 0 when n 6= −1 because

d(zn+1/(n+ 1))

dz
= zn

and zn+1/(n+ 1) is analytic on C(0;R).

3.3 The ML-formula

lemma 3.5 Suppose G(t) is a continuous complex valued function of t. Then∣∣∣∣∣
∫ b

a

G(t)dt

∣∣∣∣∣ ≤
∫ b

a

|G(t)| dt.
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Proof

Let ∫ b

a

G(t)dt = Reiθ, R ≥ 0,

since the integral is a complex number. Therefore,∫ b

a

e−iθG(t)dt = R.

Suppose

e−iθG(t) = A(t) + iB(t),

where A(t) and B(t) are real valued functions of t. Then

R =

∫ b

a

A(t)dt+ i

∫ b

a

B(t)dt.

But since R is real, ∫ b

a

B(t)dt = 0

and

R =

∫ b

a

A(t)dt =

∫ b

a

Re (e−iθG(t)) dt.

But |Re (z)| < |z| and so,

R ≤
∫ b

a

|e−iθG(t)| dt =

∫ b

a

|G(t)| dt

since |eiθ| = 1. Therefore,∣∣∣∣∣
∫ b

a

G(t)dt

∣∣∣∣∣ = R|eiθ| = R ≤
∫ b

a

|G(t)|dt,

or ∣∣∣∣∣
∫ b

a

G(t)dt

∣∣∣∣∣ ≤
∫ b

a

|G(t)|dt.

We now establish the ML-formula.

theorem 3.6 Let C be a smooth curve of length L and f be continuous on

C and |f | ≤M on C. Then ∣∣∣∣∫
C

f(z)dz

∣∣∣∣ ≤ML.
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Proof

Let C be represented by z(t) = x(t) + iy(t). Then by Lemma 3.5,∣∣∣∣∫
C

f(z)dz

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f(z(t))ż(t)dt

∣∣∣∣∣ ≤
∫ b

a

|f(z(t))| · |ż(t)| dt.

Now, ∫ b

a

|f(z(t))| · |ż(t)| dt ≤
∫ b

a

max
z∈C

(|f(z(t))|)|ż(t)|dt

≤M
∫ b

a

|ż(t)|dt.

Next recall that if a curve z(t) = x(t) + iy(t) then the length L of the curve is

given by 1 ∫ b

a

√
(x′(t))2 + (y′(t))2 dt =

∫ b

a

|ż(t)|dt.

Hence, ∣∣∣∣∫
C

f(z)dz

∣∣∣∣ ≤ML.

example 3.10 Let C be the contour z = 3eiθ, 0 ≤ θ ≤ π. Show that∣∣∣∣∫
C

z

z2 + 1
dz

∣∣∣∣ ≤ 9π

8
.

Solution

From Theorem 3.6, we know that∣∣∣∣∫
C

z

z2 + 1
dz

∣∣∣∣ ≤ML,

where M is the bound of |f | on C and L is the length of C. We now compute

M . On C, z = 3eiθ and so, |z| = 3 and |z2 + 1| ≥ 9− 1 = 8. This implies that

1

|z2 + 1|
≤ 1

8
.

Hence, ∣∣∣∣ z

z2 + 1

∣∣∣∣ ≤ 3

8
,

on C. Therefore M ≤ 3

8
. Next, the length L of the arc C is clearly 3π since this

1 Stewart’s Calculus, Theorem 9.1.2.
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is the perimeter of the semi-circle with radius 3. Therefore, by the ML-formula,

we deduce that ∣∣∣∣∫
C

z

z2 + 1
dz

∣∣∣∣ ≤ 9π

8
.



4 The Cauchy-Goursat Theorem

4.1 The Cauchy-Goursat Theorem

definition 4.1 A closed curve C is a curve where the initial point and ter-

minal point meets. A simple closed curve C is a closed curve which has no other

meeting points.

definition 4.2 A set S is star-shaped if it has a point s, called the star center,

so that for each z ∈ S, the segment [s, z] lies in S. Here [s, z] denote the line

joining s and z.

Remark 4.1 Suppose P (x, y) and Q(x, y) together with their partial derivatives

are continuous in the region bounded by a simple closed curve. Then according

to Green’s Theorem in advanced calculus∫
C

Pdx+Qdy =

∫∫
R

(Qx − Py)dxdy.

The first integral is over the contour and the second is over the region bounded

by the contour.

Now consider

f(z) = u(x, y) + iv(x, y),

is analytic in R bounded by C. Then∫
C

f(z) dz =

∫
C

(u+ iv)(dx+ idy)

=

∫
C

udx− vdy + i(

∫
C

vdx+ udy)

=

∫∫
R

(−v)x − uydxdy + i(

∫∫
R

ux − vydxdy) = 0,
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since Cauchy-Riemann equations are satisfied, namely, ux = vy and uy = −vx.

Therefore, ∫
C

f(z)dz = 0.

In the above discussion, we have assumed that f ′ is continuous. Our aim will

be to prove a result similar to the above without assuming the continuity of

f ′. We will now remove this condition and prove the following Theorem due to

Goursat:

theorem 4.1 Suppose f is analytic on a star-shaped region S and C is a

simple closed curve in S traversed in the counterclockwise direction. Then∫
C

f(z)dz = 0.

Before we proceed to the proof, we look at some examples.

example 4.1 Let f(z) = ze−z. Now ze−z is analytic in |z| ≤ 1. Therefore∫
C

f(z)dz = 0.

definition 4.3 Let d(x, y) = |x−y| and if S is a set in C, we let the diameter

of S, denoted by diam S, to be

diamS = sup{d(x, y)|x, y ∈ S}.

lemma 4.2 Suppose {Fk} is a collection of non-empty closed sets with

F1 ⊃ F2 ⊃ F3 ⊃ · · ·

and diam Fn → 0 as n→∞, then

∞⋂
n=1

Fn consists of a single point.

A sequence {zk} ⊂ S is Cauchy if for every ε > 0, there exists Nε ∈ Z+ such

that |zn − zm| < ε whenever n > m > Nε. If S is a set for which every Cauchy

sequences in S is convergent, then we say that S is complete. It is known that R

is complete. Note that this is a consequence of the axiom that every sequence that
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is bounded above has a least upper bound. The fact that R is complete implies

that C is complete. In other words, every Cauchy sequence in C is convergent.

Proof

Let zk ∈ Fk. Since diam Fn → 0 as n → ∞, we find that for all ε > 0, there

exists Nε ∈ Z+ such that

diamFn < ε

whenever n ≥ Nε. Let n > m > Nε. Then zn, zm ∈ FNε and

|zn − zm| ≤ diamFNε < ε.

This implies that {zk} is a Cauchy sequence and therefore it converges to a limit

z0. If

z0 ∈
∞⋂
n=1

Fn,

then we have proved that

∞⋂
n=1

Fn is non-empty.

If

z0 6∈
∞⋂
n=1

Fn,

then

z0 ∈
∞⋃
n=1

F cn.

This implies that z0 ∈ F cs for some integer s ∈ Z+. Since Fs is closed, F cs is

open and B(z0; δ) ⊂ F cs for some δ > 0. This implies that

B(z0; δ) ∩ Fs = φ,

or

|w − z0| ≥ δ

for all w ∈ Fs. If n > s, then Fs contains Fn and hence |zn − z0| ≥ δ since

zn ∈ Fn ⊂ Fs. This implies that zn does not converge to z0.

Now, suppose z0, y ∈
∞⋂
n=1

Fn. Then

d(z0, y) ≤ diam(Fn),

for n ≥ 1. But diam(Fn)→ 0 as n→∞ implies that d(z0, y) = 0. Hence z0 = y.

This implies that
∞⋂
n=1

Fn = {z0}.
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lemma 4.3 If f is analytic on an open set D and T is a closed triangular region

with boundary ∂T that lies in D, then∫
∂T

f(z)dz = 0.

Proof

We will prove the result by contradiction. Suppose

I :=

∫
∂T

f(z)dz 6= 0.

Take the mid-point of each side and subdivide T into four triangles T 1, T 2, T 3,

and T 4 (See the following diagram).

T 1

T 2

T 3

T 4

Note that ∫
∂T

f(z)dz =

4∑
k=1

∫
∂Tk

f(z)dz.

Hence, by triangle inequality,

0 6=
∣∣∣∣∫
∂T

f(z)dz

∣∣∣∣ ≤ 4∑
k=1

∣∣∣∣∫
∂Tk

f(z)dz

∣∣∣∣ . (4.1)

If ∣∣∣∣∫
∂Tk

f(z)dz

∣∣∣∣ < 1

4

∣∣∣∣∫
∂T

f(z)dz

∣∣∣∣ (4.2)

for k = 1, 2, 3, 4, then by (4.1), we conclude that

|I| < 1

4
· 4 · |I| = |I|,

which is a contradiction if |I| > 0. This implies that (4.2) cannot be true and

there exists i0 with 1 ≤ i0 ≤ 4 such that∣∣∣∣∫
∂T i0

f(z)dz

∣∣∣∣ ≥ 1

4

∣∣∣∣∫
∂T

f(z)dz

∣∣∣∣ . (4.3)



4.1 The Cauchy-Goursat Theorem 57

We now rename T0 = T and T1 = T i0 .

Note that the diameter of T i0 is half the diameter of T0, i.e.,

diam(T i0) =
diam(T0)

2
,

and the length of ∂T i0 is also half of the length of ∂T0, or,

L(∂T i0) =
L(∂T0)

2
. (4.4)

Next, we repeat the above process with T0 replaced by T1 and so on. We

then obtain a sequence of triangles T1, T2 = T i11 , · · · , Tn = T
in−1

n−1 such that the

diameter of Tn is 1/2 the diameter of Tn−1, which by induction, is 1/2n times

the diameter of T0, namely,

diam(Tn) =
diam(T0)

2n
, (4.5)

the length of ∂Tn is 1/2n times the length of T , or

L(∂Tn) =
L(∂T )

2n
.

and that ∣∣∣∣∫
∂Tn

f(z)dz

∣∣∣∣ ≥ 1

4n

∣∣∣∣∫
∂T

f(z)dz

∣∣∣∣ .
Note that {Tn} is a sequence of closed sets satisfying T0 ⊃ T1 ⊃ T2 ⊃ · · · with

diam(Tn)→ 0 as n→∞ by (4.5). By Lemma 4.2, there must be a point

z0 ∈
∞⋂
n=0

Tn.

Let

ε =
|I|

2diam(T0)L(∂T0)
> 0.

Since f is differentiable at z0, there is a δε > 0 so that∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε,

whenever 0 < |z − z0| < δε. In other words,

|f(z)− f(z0)− f ′(z0)(z − z0)| < ε|z − z0|. (4.6)

We next claim that there is a positive integer N such that TN ⊂ B(z0; δε).

To prove this claim, we observe that since diam Tn → 0 as n→∞, there exists

N ∈ Z+ such that

diamTn <
δε
2



58 The Cauchy-Goursat Theorem

whenever n ≥ N . Since z0 ∈ TN , this implies that for all u ∈ TN ,

|u− z0| < diamTN <
δε
2
< δε.

In other words,

TN ⊂ B(z0; δε).

Combining this claim with (4.6), we deduce that for all z ∈ TN ,

|f(z)− f(z0)− f ′(z0)(z − z0)| < ε|z − z0|. (4.7)

Now, both f ′(z0)(z−z0) and f(z0) have primitives which are f ′(z0)(z2/2−z0z)

and f(z0)z, respectively. Hence,∫
∂TN

f ′(z0)(z − z0)dz = 0 and

∫
∂TN

f(z0)dz = 0

and we deduce that∫
∂TN

(f(z)− f(z0)− f ′(z0)(z − z0))dz =

∫
∂TN

f(z)dz.

Hence, we find that

0 <
1

4N
|I| = 1

4N
|
∣∣∣∣∫
∂T0

f(z)dz

∣∣∣∣ ≤ ∣∣∣∣∫
∂TN

f(z)dz

∣∣∣∣
=

∣∣∣∣∫
∂TN

f(z)− f(z0)− f ′(z0)(z − z0)dz

∣∣∣∣ . (4.8)

Since we are integrating over ∂TN , we deduce from (4.7) that

|f(z)− f(z0)− f ′(z0)(z − z0)| < ε|z − z0| < ε · diam(TN ). (4.9)

Using (4.8),(4.9), (4.5), (4.4) and the ML-formula, we deduce that

0 < |I| =
∣∣∣∣∫
∂T0

f(z)dz

∣∣∣∣ < 4N ε(diamTN )L(∂TN )

≤ 4N ε
1

2N
diam(T0)

1

2N
L(∂T0) =

|I|
2
.

This is clearly a contradiction and we conclude that I = 0.

4.2 Existence of primitive

Recall in calculus that if f is continuous on (a, b), we can create a primitive by

letting

F (x) =

∫ x

x0

f(t) dt.
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We then show that F ′(x) = f(x). As an application, we define

lnx =

∫ x

1

1

t
dt

and note that

d lnx

dx
=

1

x
.

In order to create primitive for continuous function on star-shaped region, we

will follow the above idea and set

F (z) =

∫
[s,z]

f(ζ) dζ

where s is the star center. This is the starting point of the proof of the following

theorem.

theorem 4.4 Let S be an open star-shaped region and f be continuous on

S. Let T be a closed triangular region and ∂T be the boundary of the triangle

traversed in the anticlockwise direction. Suppose∫
∂T

f(z)dz = 0

for every T in S, then f has a primitive F on S.

Proof

Let s be a star center for S. For each z ∈ S, define

F (z) =

∫
[s,z]

f(ζ)dζ.

We will show that

F ′(z0) = f(z0)

for all z0 ∈ S.

Let z0 ∈ S. Since S is open, there exist a δ1 > 0 such that B(z0; δ1) ⊂ S (S is

open).

Next, since f is continuous at z0, we find that for ε > 0, there exists δ2 > 0

such that

|f(ζ)− f(z0)| < ε whenever |z − z0| < δ2 (4.10)
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s

z

z0

Let δ = min(δ1, δ2). For z ∈ B(z0; δ),∫
[z0,z]

+

∫
[s,z0]

+

∫
[z,s]

f(ζ)dζ = 0,

since by hypothesis, the integral over any boundary of a triangle in S is 0. This

implies that

F (z)− F (z0)

z − z0
− f(z0) =

1

z − z0

{∫
[s,z]

f(ζ)dζ −
∫

[s,z0]

f(ζ)dζ − (z − z0)f(z0)

}

=
1

z − z0

{∫
[z0,z]

f(ζ)dζ

}
− f(z0)

z − z0

∫
[z0,z]

1dζ

=
1

z − z0

∫
[z,z0]

(f(z0)− f(ζ)) dζ.

Therefore, for 0 < |z − z0| < δ,∣∣∣∣F (z)− F (z0)

z − z0
− f(z0)

∣∣∣∣ < 1

|z − z0|
ε|z − z0| = ε,

where we have used (4.10) and the ML-formula. This implies that F ′(z0) =

f(z0).

We now state the Cauchy-Goursat Theorem for star shaped region.

theorem 4.5 Suppose f is analytic on a star-shaped region S. Then for every

simple closed path C in S traversed in the counterclockwise direction,∫
C

f(z)dz = 0.

Proof

By Lemma 4.3, ∫
∂T

f(z)dz = 0

for any closed triangle T . Therefore, by Theorem 4.4, there exist a function F (z)

such that

F ′(z) = f(z).
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But if f has a primitive, then by Theorem 3.4,∫
C

f(z)dz

depends on the starting point and end point of C. But since C is a closed curve,

these points are the same. Hence,∫
C

f(z)dz = 0,

and this completes the proof of the Theorem.

example 4.2 Let C := {z ∈ C : |z| = 1}. Show that∫
C

z2

z − 3
dz = 0.

Solution

In the region |z| ≤ 1, the function
z2

z − 3
is analytic. Hence, by the Cauchy

Theorem, ∫
C

z2

z − 3
dz = 0.

Remark 4.2 We summarize what we have done in order to prove Theorem

4.5. We first show that if f is analytic on a region D then the integral of f

over any boundary of a triangle in D is 0. We use this fact to construct a

primitive of f for function analytic on a star-shaped region. We now observe

that if S = {z| − π < argz < π} then S is a star shaped region with star center

1 (In fact, we can choose any positive real number to be the star center.) Hence

if we let

Ln z =

∫ z

1

1

ζ
dζ,

we find that
dLn z

dz
=

1

z
.

Note that when z is real and positive,∫ x

1

1

t
dt = lnx.

It can be shown that

eLnz = z

and hence Lnz is an inverse function for ez. We use the word “an” because

Lnz + 2πik is also an inverse function for ez for any integer k.
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4.3 Extended Cauchy-Goursat Theorem

In this section, we prove a slightly more general result than the Cauchy-Goursat

Theorem.

theorem 4.6 Let f be continuous on star shaped region and analytic on

S − {z0}. Then f has a primitive on S and consequently,∫
C

f(z)dz = 0

for every simple closed curve in S traversed in the counterclockwise direction.

The proof of the above is exactly the same as Theorem 4.5. The only difference

is that we need a different version of Lemma 4.3 which we now state.

lemma 4.7 Let f be continuous on S and analytic on S − {z0}. If T is any

triangle contained in S, then ∫
∂T

f(z)dz = 0.

Proof

We split our proof into several cases.

Case 1. If the closed triangle T does not contain z0, then the conclusion follows

using Lemma 4.3.

Case 2. Suppose z0 is a vertex of T and suppose that

|I| =
∣∣∣∣∫
∂T

f(z)dz

∣∣∣∣ > 0

Since z0 ∈ S and S is open, we can find δ1 > 0 such that B(z0; δ1) ⊂ S.

Next, f is continuous at z0 implies that there exists δ2 > 0 such that

|f(z)− f(z0)| < 1 whenever |z − z0| < δ2.

In other words,

|f(z)| ≤ 1 + |f(z0)| whenever |z − z0| < δ2. (4.11)

Next, let

δ3 =
|I|

8(|f(z0)|+ 1)

and set δ = min(δ1, δ2, δ3).



4.4 The Cauchy Integral Formula 63

Choose a and b on the triangle T such that the triangle T1 formed by

z0, a and b lies inside B(z0; δ). Note that∫
∂T

f(z)dz =

∫
∂T1

f(z)dz.

Now, the length of T1 is less than 4δ (the lengths of [z0, a] and [z0, b]

are each less than δ and the length of [a, b] is less than 2δ, the diameter

of C(z0; δ)). By (4.11), |f(z)| is bounded by |f(z0)| + 1. Hence, by the

ML-formula, we find that

0 < |I| =
∣∣∣∣∫
∂T1

f(z)dz

∣∣∣∣
< (|f(z0)|+ 1) 4δ

<
|I|
2
,

where we have used the bound δ ≤ δ3 in the last inequality. Hence

|I|
2
> |I|

and we have a contradiction. This implies that |I| = 0.

Case 3. If z0 lies on the edge of the triangle, we just divide the triangle into two

triangles having z0 as a vertex and apply Case 2.

Case 4. If z0 lies in the interior of T , we join z0 to the three vertices to form

three triangles with vertex z0 and apply Case 2.

This completes the proof of the lemma.

4.4 The Cauchy Integral Formula

We now apply Theorem 4.6 to obtain an important result.

theorem 4.8 Let f be analytic in a starshaped region S and let C be a simple

closed contour in S traversed in the counterclockwise direction. If w is any point

interior to C, then

f(w) =
1

2πi

∫
C

f(z)

z − w
dz.

This is called the Cauchy Integral Formula. It tells us that if a function f is

analytic within and on a simple closed curve, then the values of f interior to C
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are completely determined by the values of f on C. In application, we choose C

to be a circle centered at w with radius r such that C(w; r) ∈ S.

Sketch of the proof of Theorem 4.8

Define that function

g(z) =


f(z)− f(w)

z − w
when z 6= w

f ′(w) z = w.
.

Note that g(z) is continuous in S and analytic at S − {w}. If C is a simple

closed curve in S, then by Theorem 4.6,∫
C

g(z) dz = 0.

But

0 =

∫
C

g(z) dz =

∫
C

f(z)− f(w)

z − w
dz =

∫
C

f(z)

z − w
dz −

∫
C

f(w)

z − w
dz. (4.12)

But if C is a simple closed curve containing w then∫
C

1

z − w
dz =

∫
C(w;r)

1

z − w
dz, (4.13)

where C(w; r) is the circle centered at w with radius r traversed in the coun-

terclockwise direction.

By parametrizing C(w; r) using z(t) = w + reit, 0 ≤ t ≤ 2π, we find that∫
C(w;r)

1

z − w
dz = 2πi.

Therefore, ∫
C

1

z − w
dz = 2πi, (4.14)

for any simple closed curve containing w. Hence, we may rewrite (4.12) as

f(w) =
1

2πi

∫
C

f(z)

z − w
dz,

which completes the proof of the theorem.
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Remark 4.3 We have assumed (4.13) for arbitrary closed simple curve C. Note

that the region bounded by the following curve

is not star shaped. One can cover this compact region by finitely many open

balls with centers in the region. Subdivide the curves so that each subdivision is

in an open ball. Since an open ball is star shaped the integral over the contour

lying in the ball is 0. By adding these integrals, we obtain (4.13).

example 4.3 Let C be a positively oriented circle |z| = 2. Show that∫
C

z

(9− z2)(z + i)
dz =

π

5
.

Solution

Since the function

f(z) =
z

9− z2

is analytic within and on C and since the point z0 = −i is interior to C, the

Cauchy integral formula gives∫
C

z

(9− z2)(z + i)
dz =

∫
C

z/(9− z2)

z − (−i)
dz = 2πi

(
−i
10

)
=
π

5
.

Cauchy’s integral formula can also be used to evaluate certain definite integral.

We illustrate this in the following examples.

example 4.4 Show that ∫ 2π

0

1

5 + 4 cos θ
dθ =

2π

3
.

Solution

Let ζ = eiθ. Then

5 + 4 cos θ =
1

ζ

(
5ζ + 2ζ2 + 2

)
.
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We deduce that∫ 2π

0

1

5 + 4 cos θ
dθ =

1

i

∫
C(0;1)

1

2ζ2 + 5ζ + 2
dζ =

1

i

∫
C(0;1)

1

2(ζ + 1/2)(ζ + 2)
dζ.

Now, the curve C(0; 1) encloses only −1/2 and therefore, by Cauchy’s integral

formula, we deduce that

1

i

∫
C(0;1)

1

2(ζ + 1/2)(ζ + 2)
dζ =

1

i
2πi

1

2(ζ + 2)

∣∣∣∣
ζ=−1/2

=
2π

3

and this completes the proof of the identity.

4.5 Liouville’s Theorem and the Fundamental Theorem of Algebra

theorem 4.9 (Liouville’s Theorem) Let f(z) be an entire function. If f(z) is

bounded, then f is a constant.

Proof

Suppose for all z ∈ C, |f(z)| ≤ M , where M is some positive real number. Let

a, b be arbitrary distinct complex numbers. Our aim is to show that f(a) = f(b),

which will imply that f(z) is a constant function.

Let R > 0 be large enough so that C(0;R) encloses a and b. Let C be the

contour C(0;R) traversed in the counterclockwise direction. By Cauchy’s integral

formula, we deduce that

f(a) =
1

2πi

∫
C

f(ζ)

ζ − a
dζ

and

f(b) =
1

2πi

∫
C

f(ζ)

ζ − b
dζ.

This implies that

f(b)− f(a) =
1

2πi

∫
C

f(ζ)

(
1

ζ − b
− 1

ζ − a

)
dζ =

1

2πi

∫
C

f(ζ)
b− a

(ζ − b)(ζ − a)
dζ.

By ML−formula, we deduce that

|f(b)− f(a)| ≤ 1

2π
|b− a| 2πRM

(R− |b|)(R− |a|)
.

As R→∞, we deduce that |f(b)− f(a)| = 0, or f(a) = f(b).

example 4.5 Let f be an entire function and suppose that Re f(z) < M for

all z ∈ C. Prove that f is a constant function.
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Solution

Let g(z) = ef(z). Then ∣∣∣ef(z)
∣∣∣ = eRe f(z) ≤ eM .

This implies, using Liouville Theorem, that ef(z) is a constant function since

ef(z) is entire. Let f(z) = u+ iv. Then ef(z) = eu · eiv. The fact that ef(z) = C

implies that

eu = |C|.

Hence,

u = ln |C|.

Since the real part of f(z) is a constant, we conclude that f(z) is a constant.

An application of this Theorem is that it yields a simple proof of the Funda-

mental Theorem of Algebra. This is surprising since we are now using results in

analysis to prove results in Algebra. This further shows that topics in mathe-

matics are inter-related.

Before we proceed with the proof of the next theorem, we quote a fact about

continuous functions and subsets of C which are closed and bounded.

theorem 4.10 Let f be a continuous function on a region D and S be a closed

and bounded set in D. Then f(S) is also closed and bounded.

Remark 4.4 We will use Theorem 4.10 several times in this course to simplify

our proofs of various theorems. The proof of the theorem is indirect. We first show

that a set in C is closed and bounded if and only if it is compact (see Appendix

for its definition). We then prove that continuous functions send a compact set

to a compact set. This then implies that a continuous function sends a closed

and bounded set to a closed and bounded set.

theorem 4.11 (Fundamental Theorem of Algebra) Every non-constant poly-

nomial with complex coefficients has a zero in C.

Proof

Let P (z) be any non-constant polynomial. Suppose P (z) 6= 0 for all z ∈ C. This

implies that f(z) =
1

P (z)
is defined for all z ∈ C since f(z) is bounded in C.

The function f(z) is entire because its derivative is given by

− P
′(z)

P (z)2
.
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Furthermore, if P (z) is non-constant, P → ∞ as z → ∞ and so f is bounded.

This is because since f → 0 as z →∞, for ε = 1 there exists M such that

|f | ≤ 1 for all |z| > M.

For |z| ≤ M , we see that the set S = {z||z| ≤ M} is closed and bounded. By

Theorem 4.10, we know that f(S) is bounded, say,

|f(z)| ≤ B

for all |z| ≤M. Hence for all z ∈ C,

|f | ≤ max(B, 1)

and f is a bounded entire function.

By Liouville’s Theorem, f must be a constant and so, P (z) must be a constant.

This contradicts our choice of P (z).

By induction, we see that any polynomial with complex coefficients must factor

into linear factors, in other words,

P (z) = anz
n + · · ·+ a1z + a0 = an(z − α1) · · · (z − αn).

In Chapter 1, we indicate that i may be defined as the root of z2 + 1 = 0. A

natural question to ask is if we consider all possible polynomials with coefficients

in C, say for example, z2 + i = 0, will we discover new numbers analogous to

that of i? Or do we have to define new numbers to solve these polynomials? The

above observation says that we do not have to define more numbers. In fact, all

polynomials factor into linear factors in C.

4.6 Appendix : Compact sets in C

definition 4.4 A set S ⊂ C is compact if it satisfies the Heine-Borel property,

namely, or every open covering C of S, there exists a finite subcovering of S in

C.

This means that if S ⊂
⋃
α Uα with Uα ∈ C, then

S ⊂
k⋃
j=1

Uαj .

It can be shown that if S is a subset of C then S is a compact if and only if S

is closed and bounded.

Let f be a function from a region X to Y . A function is continuous on a region
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X if for every set V that is “open in Y ”,1 the set f−1(V ) is “open in X”. We

can show that our old notion of continuous function satisfies the above property

(see Appendix of Chapter 2).

We now sketch the proof of Theorem 4.10.

Sketch of the proof of Theorem 4.10

Let C be a covering of f(S). Then

f(S) ⊂
⋃
α

Oα,

where Oα is open in C. Let Uα = Oα ∩ Y . Then f(S) ⊂
⋃
α Uα. This means

that

S ⊂ f−1

(⋃
α

Uα

)
=
⋃
α

f−1 (Uα) .

Note that because f is continuous, f−1(Uα) is “open in X”. Let f−1(Uα) =

O∗α ∩X, with O∗α open set in C. Since S is compact,

S ⊂
k⋃
j=1

O∗αj .

Hence,

S ∩X = S ⊂

 k⋃
j=1

O∗αj

 ∩X =

k⋃
j=1

f−1
(
Uαj

)
.

Hence

f(S) ⊂
k⋃
j=1

(
Oαj

)
,

and therefore f(S) is compact.

Our aim is conclude that if S is compact and f is continuous then |f(S)| is

bounded since a set in C is compact if and only if it is closed and bounded.

We will next prove that a set S in C is compact if and only if S is closed and

bounded.

We do this in several steps.

lemma 4.12 If S ⊂ C is compact, then S is bounded.

Proof

It is clear that

S ⊂
⋃
s∈S

B(s; 1).

1 We say that U is open in S if U = O ∩ S for some open set O in C.
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Since S is compact, it is covered by finitely many such open balls and we have

S ⊂
k⋃
j=1

B(sj ; 1).

Let d = max1≤i<j≤k |si−sj |. Given any u, v ∈ S, u ∈ B(sm; 1) and v ∈ B(sn; 1)

for some integers m and n between 1 and k. Now, |u − v| ≤ |u − sm| + |sm −
sn| + |v − sn| < 2 + d. Hence the diameter of S is finite and S is bounded by

B(0; |u|+ diamS).

lemma 4.13 If S ⊂ C is compact, then S is closed.

Proof

To show that S is closed, we show that S = S. Suppose s ∈ ∂S and s 6∈ S. Then

B(s; ε) ∩ S 6= φ and B(s; ε) ∩ Sc 6= φ for all ε > 0. In particular, for n ∈ Z+,

B

(
s,

1

n

)
∩ S 6= φ.

This implies that

B

(
s,

1

n

)
∩ S 6= φ.

Let Gn =
(
B
(
s, 1
n

))c
. Note that Gn is open. Now,

⋃(
B

(
s,

1

n

))c
=

(⋂
B

(
s,

1

n

))c
.

But {B
(
s, 1
n

)
|n ∈ Z+} is a collection of nested closed sets and by Cantor’s

Theorem (Lemma 4.2), ⋂
B

(
s,

1

n

)
= {s}.

Therefore
⋃
Gn = ({s})c covers S (s 6∈ S). Since S is compact, S is covered by

finitely many sets Gnj or

S ⊂
k⋃
j=1

Gnj .

This means that

S ∩

 k⋃
j=1

Gnj

c

= φ,

with n1 < n2 < · · · < nk, or

S ∩B
(
s,

1

n1

)
∩B

(
s,

1

n2

)
· · · ∩B

(
s,

1

nk

)
= S ∩B

(
s,

1

nk

)
= φ.
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This contradicts the fact that s ∈ ∂S. Therefore S is closed.

We are now left with the proof that if S is closed and bounded then S is

compact 2

definition 4.5 We say that a set S is totally bounded if for every ε > 0, S

can be covered by finitely many open balls of radius ε.

lemma 4.14 If S is bounded then it is totally bounded.

Proof

If the set is bounded and ε > 0 is given, we can divide the set S using squares of

side ε/
√

2. Then the finite number of balls with vertices of the squares as centers

would cover S. So, S is totally bounded.

lemma 4.15 If S is closed subset of a complete set, S is complete.

Proof

Let {sk} be a sequence of numbers from S that is Cauchy. Since C is complete,

sk → a for some a ∈ C. We claim that a ∈ S. If a 6∈ S, a ∈ Sc and B(a; ε) ⊂ Sc
for some ε > 0 since Sc is open. This means that B(a; ε)∩S = φ and |sk−a| ≥ ε.
But this contradicts the fact that sk → a. Hence S is complete.

lemma 4.16 If S is closed and bounded then S is compact.

Proof

From the previous two lemmas, we can assume that S is complete and totally

bounded. Suppose C = {Oj} is an open covering for S without any finite sub-

covering.

Let ε1 = 1
2 . The set S is totally bounded implies that S can be covered by

finitely many open balls of radius ε1. Write

S =

m1⋃
`=1

(B(a`; ε1) ∩ S)

where we only include those open balls with non-empty intersection with S.

By assumption, S cannot be covered by finitely many sets Oj ’s in C. Hence,

there is an open ball B(x1; ε1) centered at x1 with radius ε1 such that then

non-empty set B(x1; ε1) ∩ S cannot be covered by finitely many open sets Oj ’s
2 This is not true in general for complete metric space. It is true for C and R.
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in C. Now, B(x1; ε1) ∩ S is totally bounded since it is a subset of a totally

bounded set S. Therefore B(x1; ε1) can be covered by finitely many open balls

of radius ε2 = 2−2. Once again, among these open balls, there exists an open

ball B(x2; ε2) such that the non-empty set B(x2; ε2) ∩ S cannot be covered by

finitely many Oj ’s in C. Continuing with this construction, we obtain a sequence

of sets {B(xk; εk) ∩ S} that cannot be covered by finitely many sets in C. For

each k, let sk ∈ (B(xk; εk) ∩ S). Note that

|sn − sn+1| ≤ |sn − xn|+ |xn − xn+1|+ |xn+1 − sn+1|

<
1

2n
+

1

2n
+

1

2n+1
+

1

2n+1
≤ 3

2n
.

Hence,

|sm − sm+p| ≤ |sm − sm+1|+ · · ·+ |sm+p−1 − sm+p| <
6

2m

Therefore, the sequence {sk} is a Cauchy sequence. Since S is complete, sk → a

with a ∈ S. Now S is covered by Oj ’s in C and therefore, a ∈ O for some open

set O in C. This implies that B(a; δ) ⊂ O for some δ > 0 since O is open. Now,

since sk → a, there exists M such that

|sk − a| <
δ

3

for all k > M . We choose k > M , say k = K, such that

εK = 2−K <
δ

3
.

Now, consider the set B(xK ; εK) ∩ S. By assumption,

sK ∈ B(xK ; εK) ∩ S.

Let b ∈ B(xK ; εK) ∩ S. Then

|b− a| = |b− xK + xK − sK + sK − a|
≤ |b− xK |+ |xK − sK |+ |sK − a|

≤ δ

3
+
δ

3
+
δ

3
= δ.

Therefore, b ∈ B(a; δ) ⊂ O. Hence, (B(xK ; εK)∩S) ⊂ O and is therefore covered

by a finite number of sets in C. This contradicts our choice of B(xK ; εK) and so

S is covered by finitely many sets in C.

Remark 4.5 In the proof of the above Lemma, one can start with open balls

with centers in S. For suppose that B(x; ε/2) is one of the finitely many balls

of radius ε/2 covering S such that B(x; ε/2) ∩ S 6= φ and that x 6∈ S. Then let

s ∈ B(x; ε/2). The ball B(s; ε) covers B(x; ε/2)∩S and hence, we obtain an open

covering of S by finitely by open balls B(s; ε) with s ∈ S. Using these balls with

centers in S, we obtain another proof of the Lemma. For more details, see p. 61

of Ahlfors.



5 Cauchy’s Integral formulas and
their applications

5.1 First and Second derivative of Analytic Functions

We will prove in this section that if a function is analytic at a point, its derivatives

of all orders exist at that point and are themselves analytic there. In other words,

if f(z) is analytic at z = w then f (n)(z) is analytic at z = w for n ≥ 1.

theorem 5.1 Let f be analytic on a starshaped region and suppose C is a

simple closed contour in S traversed in the counterclockwise direction. If w is

any point interior to C, then

f ′(w) =
1

2πi

∫
C

f(ζ)

(ζ − w)2
dζ.

Proof

First, recall the Cauchy Integral formula

f(w) =
1

2πi

∫
C

f(ζ)

ζ − w
dζ.

Choose δ > 0 such that B(w; δ) is contained in the region enclosed by C. Let

z ∈ B(w; δ). Then

f(z)− f(w)

z − w
− 1

2πi

∫
C

f(ζ)

(ζ − w)2
dζ

=
1

2πi

(
1

z − w

∫
C

f(ζ)

(
1

ζ − z
− 1

ζ − w
− z − w

(ζ − w)2

)
dζ

)
=

1

2πi

∫
C

f(ζ)
(z − w)

(ζ − z)(ζ − w)2
dζ.

Recall that δ > 0 is chosen so that B(w; δ) is contained in the region enclosed

by C and B(w; δ) ∩ C = φ. Let d be the minimum distance from B(w; δ) to C.
1 Then

|(ζ − z)(ζ − w)2| ≥ d3.

1 The number d exists because for v ∈ C, the function f(v) = min
a∈B(w;δ)

(|v − a|) is a

continuous function in v and and is greater than 0 because B(w; δ) ∩ C = φ.
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Since f is continuous, by Theorem 4.10, |f(ζ)| < M for some M > 0. Therefore,

we find that ∣∣∣∣ f(ζ)

(ζ − z)(ζ − w)2

∣∣∣∣ ≤ M

d3
.

Denoting the length of C by L and using ML-formula, we deduce that∣∣∣∣f(z)− f(w)

z − w
− 1

2πi

∫
C

f(ζ)

(ζ − w)2
dζ

∣∣∣∣ < 1

2π

LM

d3
|z − w| < ε

whenever |z − w| < min(δ, 2πεd3/(LM)). This concludes the proof of the theo-

rem.

theorem 5.2 Let f be analytic on a starshaped region and suppose C is a

simple closed contour in S traversed in the counterclockwise direction. If w is

any point interior to C, then

f ′′(w) =
2

2πi

∫
C

f(ζ)

(ζ − w)3
dζ.

Proof

Choose δ > 0 such that B(w; δ) is contained in the region enclosed by C. Let

z ∈ B(w; δ). Then

f ′(z)− f ′(w)

z − w
− 2

2πi

∫
C

f(ζ)

(ζ − w)3
dζ

=
1

2πi(z − w)

∫
C

f(ζ)

(
1

(ζ − z)2
− 1

(ζ − w)2
− 2(z − w)

(ζ − w)3

)
dζ

=
1

2πi

∫
C

f(ζ)
(2ζ − w − z)(ζ − w)− 2(ζ − z)2

(ζ − z)2(ζ − w)3
dζ

= =
1

2πi

∫
C

f(ζ)
(z − w)(3ζ − w − 2z)

(ζ − z)2(ζ − w)3
dζ,

where the last equality holds since

(2ζ − w − z)(ζ − w)− 2(ζ − z)2 = (ζ − w + ζ − z)(ζ − z + z − w)− 2(ζ − z)2

= (ζ − z)(ζ − w)− (ζ − z)2 + (z − w)(ζ − w + ζ − z)
= (ζ − z)(ζ − w − ζ + w) + (z − w)(2ζ − w − z)
= (z − w)(3ζ − 2z − w).

Now, as in the proof of the previous theorem, we find that by Theorem 4.10,

|f(ζ)| ≤ M for all ζ ∈ C. Furthermore, if d is the minimum distance from

B(w; δ) to C, then

|(ζ − z)2(ζ − w)3| ≥ d5
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and hence, ∣∣∣∣f(ζ)
3ζ − w − 2z

(ζ − z)2(ζ − w)3

∣∣∣∣ ≤ M

d5

for all ζ on the contour C. Denoting the length of C by L and using ML-formula,

we deduce that∣∣∣∣f ′(z)− f ′(w)

z − w
− 2

2πi

∫
C

f(ζ)

(ζ − w)3
dζ

∣∣∣∣ < 1

2π
LM |z − w|/d5 < ε

whenever |z − w| < min(δ, 2πεd5/(LM)). This concludes the proof of the theo-

rem.

From Theorem 5.1 and Theorem 5.2, we deduce the following important result

which we have assumed when we show that the real and imaginary parts of an

analytic function is harmonic.

corollary 5.3 If f is analytic on a region D then f ′ is analytic on D.

By applying Corollary 5.3 repeatedly, we deduce the following corollary.

corollary 5.4 If f is analytic on a region D, then the k-th derivative f (k)

is analytic on D for all positive integers k.

5.2 Higher derivatives of analytic functions

theorem 5.5 Let f be analytic on a starshaped region and suppose C is

a simple closed contour in S traversed in the counterclockwise direction that

encloses w. Then

f (n)(w) =
n!

2πi

∫
C

f(z)

(z − w)n+1
dz.

Proof

We proceed by using mathematical induction. Note that the case for k = 1 is

Theorem 5.1. Suppose the result is true for k = n− 1. By Corollary 5.3, we note

that we may apply Cauchy’s integral formula for (n−1)-th derivative to f ′ since

f ′ is analytic in D whenever f is analytic in D. Hence,

(f ′)(n−1)(w) =
(n− 1)!

2πi

∫
C

f ′(ζ)

(ζ − w)n
dz. (5.1)
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On the other hand, we know that(
f(ζ)

(ζ − w)n

)′
=

f ′(ζ)

(ζ − w)n
− n f(ζ)

(ζ − w)n+1

and hence by the analogue of the Fundamental Theorem of Calculus, we find

that

1

2πi

∫
C

f ′(ζ)

(ζ − w)n
dζ =

n

2πi

∫
C

f(ζ)

(ζ − w)n+1
dζ (5.2)

since C is a simple closed curve. Combining (5.1) and (5.2), we complete the

proof of the theorem.

example 5.1 Evaluate the integral∫
C

5z2 + 2z + 1

(z − i)3
dz

where C is the circle with center 0 and radius 2.

Solution

By Cauchy’s integral formula for f ′′(z), we conclude that∫
C

5z2 + 2z + 1

(z − i)3
dz = πif ′′(i) = 10πi,

since f ′′(i) = 10.

example 5.2 When f(z) = 1,∫
C

1

z − z0
dz = 2πi,

and ∫
C

1

(z − z0)k
dz = 0

for k ≥ 2.

5.3 Cauchy’s Integral formula and Extended Liouville Theorem

The Liouville Theorem (see Theorem 4.9) states that if f(z) is a bounded entire

function, then f(z) is a constant. We now give the following extended version of

Liouville’s Theorem:
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theorem 5.6 If f is entire and if, for some integer k ≥ 0, there exist positive

constants A and B such that

|f(z)| ≤ A+B|z|k,

then f is a polynomial of degree at most k.

Proof

We first note that if f (m+1)(z) = 0 for all z ∈ C, then f(z) is a polynomial

of degree at most m. We can prove this claim by induction on m. Suppose

j = 0, then this means that f ′(z) = 0 and we have seen (using Cauchy-Riemann

equations) that f(z) must be a constant. Suppose the claim is true for j = m−1.

Now f (m+1)(z) = 0 implies that (f ′)(m) = 0. By induction hypothesis, this

implies that f ′(z) is a polynomial of degree at most m− 1. Now this polynomial

has a primitive (obtained by integrating the polynomial f ′(z)) f(z) which is a

polynomial of degree at most m and this proves our claim.

To establish the extended Liouville Theorem, it suffices to show that f (m+1)(z) =

0 for all z ∈ C. Let R > 0 be a positive real number. Let w ∈ C. By Cauchy’s

integral formula,

f (k+1)(w) =
k!

2πi

∫
C(0;R)

f(ζ)

(ζ − w)k+2
dζ.

By ML-formula and the bound given for f(z), we deduce that

|f (k+1)(w)| ≤ k!

2π

R(A+BRk)

(R− |w|)k+2
.

The right hand side tends to 0 as R tends to ∞. Hence,

|f (k+1)(w)| = 0

or f (k+1)(w) = 0. Since w is arbitrarily chosen, we conclude that f (k+1)(z) = 0

for all z ∈ C.

example 5.3 Suppose that f(z) is a non-constant entire and for all z ∈ C,

|f(z)| ≤ A+B|z|3/2

for all positive real numbers A and B. Show that f(z) is a linear polynomial.

Solution

For |z| ≤ 1, we find that |f(z)| ≤ C for some C > 0 since f(z) is continuous and

its image on a bounded set is a bounded set. For |z| > 1, then |z|3/2 ≤ |z|2 and

|f(z)| ≤ A+B|z|3/2 < A′ +B|z|2,
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where A′ > C. Using Extended Liouville Theorem, we conclude that f(z) =

a2z
2 + a1z + a0. If a2 = 0, then f(z) is a linear polynomial. Suppose a2 6= 0.

Then

|a2||z|2 − |a1||z| − |a0| ≤ |f(z)| ≤ A+B|z|3/2

implies that for sufficiently large R (take R > max(1,
√
|a1|+ |a0|)) and |z| = R,

|a2|R1/2 − |a1|/R1/2 − |a0|/R3/2 ≤ A/R3/2 +B.

The left hand side tends to ∞ as R tends to ∞ and the right hand side is

bounded. This is impossible and so, a2 = 0.

5.4 Morera’s Theorem and Extended Liouville Theorem

We will now use Corollary 5.3 to prove an important result known as Morera’s

Theorem.

theorem 5.7 (Morera’s Theorem) Let f be a continuous function on a star-

shaped region D. Let T be a closed triangle in D and ∂T be the boundary of T

traversed in the counterclockwise direction. If∫
∂T

f(z)dz = 0

for all T ⊂ D, then f is analytic in D.

Proof

We first note that this is very similar to the statement when we wish to derive

primitives for f in our proof of the Cauchy Goursat Theorem. However, we did

not conclude that f is analytic.

Let z0 ∈ D. Since D is a region, there exists ε > 0 such that B(z0; ε) ⊂ D.

Now, a open ball is a star shaped domain and the conditions guaranteed that we

could construct a primitive for f , namely,

F (z) =

∫ z

z0

f(ζ)dζ.

Now, F ′(z) = f(z) and so, F is analytic on z0. But by Corollary 5.3, we conclude

that F ′ is analytic at z0. This means that f is analytic at z0.

We now use Morera’s Theorem to prove the following result.

theorem 5.8 Let f be an entire function and

g(z) =


f(z)− f(a)

z − a
if z 6= a

f ′(a) if z = a.
.
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Then g is entire.

Proof

From the definition of g we see that g is analytic at C− {a} and continuous at

z = a. Let T be any triangle in C. By the extended Cauchy Goursat Theorem

(Theorem 4.6), we conclude that∫
∂T

g(ζ)dζ = 0.

Hence, by Morera’s Theorem (Theorem 5.7), we conclude that g is analytic at

a and hence g is entire.

We can now give another proof of extended Liouville Theorem.

example 5.4 Give a proof of the extended Liouville Theorem using Morera’s

Theorem.

Solution

We prove by induction on k. If k = 1, then

|f(z)| ≤ A+B|z|.

Define

g(z) =


f(z)− f(0)

z
if z 6= 0

f ′(0) if z = 0.
.

By Morera’s Theorem, g(z) is entire. When z 6= 0 and |z| ≤ 1, g(z) is bounded

by C, say. When |z| > 1,

|g(z)| ≤ A

|z|
+B ≤ A+B.

This implies that g(z) is a bounded entire function and hence a constant. Hence

f(z) = f(0) + zg(z) = f(0) + Cz

is a linear polynomial since g(z) = C.

Suppose the claim is true for any entire functions F (z) satisfying

|F (z)| ≤ C +D|z|k−1.

Let f(z) be entire and

|f(z)| ≤ A+B|z|k.
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Define

g(z) =


f(z)− f(0)

z
if z 6= 0

f ′(0) if z = 0.
.

Note that g(z) is entire by Morera’s Theorem. For |z| ≤ 1, g(z) is bounded, say,

by M∗. For |z| > 1, we conclude that

|g(z)| ≤ A

|z|
+B|z|k−1 ≤ A+B|z|k−1.

Hence, for all z,

|g(z)| ≤ A′ +B′|z|k−1,

where A′ > A+B. By induction hypothesis, we conclude that g(z) is a polynomial

of degree at most (k − 1).

Since

g(z) =
f(z)− f(0)

z

we conclude that f(z) is a polynomial of degree at most k.

example 5.5 Suppose f(z) is entire and |f ′(z)| ≤ |z| for all z ∈ C. Show that

f(z) = a+ bz2

with |b| ≤ 1/2.

Solution

The function f ′(z) is entire since f is entire. We have |f ′(z)| ≤ |z| implies that

f ′(z) = Az + B by the extended Liouville theorem. But from the inequality

|f ′(z)| ≤ |z| shows that f ′(0) = 0 and hence B = 0. Now |f ′(z)| = |Az| ≤ |z|
implies that |A| ≤ 1.

Next, f ′ = Az implies that f = Az2/2 + C and |A/2| ≤ 1
2 .

5.5 Mean Value Theorem and the Maximum Modulus Theorem

We now examine some local behavior of analytic functions.

theorem 5.9 (Mean Value Theorem) If f is analytic in a region D and α ∈ D,

then f(α) is equal to the mean value of f taken around the boundary of any ball

centered at α and contained in D. That is

f(α) =
1

2π

∫ 2π

0

f(α+ reiθ)dθ
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when B(α; r) ⊂ D.

Proof

From Cauchy Integral formula, we have

f(α) =
1

2πi

∫
C(α;r)

f(ζ)

ζ − α
dζ.

Let ζ = reiθ + α. Then we find that

f(α) =
1

2π

∫ 2π

0

f(α+ reiθ)dθ.

theorem 5.10 (Maximum Modulus Theorem on an open ball) Suppose that

f(z) is analytic throughout a neighborhood |z−z0| < R of a point z0. If |f(z)| ≤
|f(z0)| for each point z in that neighborhood, then f(z) has the constant value

f(z0) throughout the neighborhood.

Proof

Our aim is to show that if |f(z)| is maximum for some z = z0 in B(z0;R) then

f(z) is a constant on B(z0;R). Let w be an arbitrary point in B(z0;R).

•
z0

•
w

Let r = |w− z0| < R. From the Mean Value Theorem (Theorem 5.9), we have

f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ)dθ.

It follows that

|f(z0)| = 1

2π

∣∣∣∣∫ 2π

0

f(z0 + reiθ)dθ

∣∣∣∣ ≤ 1

2π

∫ 2π

0

|f(z0 + reiθ)|dθ. (5.3)

By assumption that |f(z0)| is maximum, we have |f(z0)| ≥ |f(z)| for z ∈
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C(z0; r). Hence,

1

2π

∫ 2π

0

|f(z0 + reiθ)|dθ ≤ |f(z0)|.

Together with (5.3), we deduce that

1

2π

∫ 2π

0

|f(z0 + reiθ)|dθ = |f(z0)|,

or ∫ 2π

0

|f(z0)| − |f(z0 + reiθ)|dθ = 0 (5.4)

We claim that |f(w)| = |f(z0)| for all w ∈ C(z0; r). Suppose not. Then

there exist T such that |f(z0 + re2iT )| < |f(z0)|, 0 ≤ T ≤ 2π. Let F (t) =

|f(z0)| − |f(z0 + re2it)|. Then we have |F (T )| > 0. Let |F (T )| = h > 0. Since

F (t) is continuous, for h/2 > 0, there exists δ > 0 such that if |t− T | < δ then

|F (t)− F (T )| < h

2
,

or

|F (T )| − |F (t)| < |F (T )− F (t)| < h

2
.

Therefore,

|F (t)| > h

2
.

Hence, ∫ T+δ

T−δ
|F (t)|dt > h

2
2δ > 0

and this contradicts (5.4). This implies |f(z0)| = |f(z0 + reit)|, 0 ≤ t ≤ 2π and

in particular, |f(z0)| = |f(w)|. Since w is arbitrary, we conclude that |f(z0)| =

|f(z)| for all z ∈ B(z0;R). Now, by Example 2.26, we conclude that f is constant

on B(z0;R).

theorem 5.11 (Maximum modulus principle for a region) If a function f is

analytic and not constant in a given domain D, then |f(z)| has no maximum

value in D. That is, there is no point z0 in the domain such that |f(z)| ≤ |f(z0)|
for all points z in it.

Proof

We wish to prove that for any w ∈ D, f(w) = f(z0). It suffices to show that

|f(w)| = |f(z0)| for all w ∈ D. Since D is a region, there is a polygonal line from

z0 to w (see the diagram below):
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•
z0

•w

To show that |f(w)| = |f(z0)|, it suffices to show that if [z0, z1] is a line, then

|f(z0)| = |f(z1)|. By continuing along the polygonal line and using the result for

line segment, we conclude that |f(w)| = |f(z0)|.
Now, the line segment [z0, z1] is a compact set (closed and bounded in C).

Since D is open, for each v ∈ [z0, z1], there exists δv > 0 such that B(v; δv) ⊂ D.

Note that {B(v; δv)|v ∈ [z0, z1]} is an open cover for [z0, z1]. Since [z0, z1] is

compact, there exists a finite number of uj such that

[z0, z1] ⊂
K⋃
j=1

B(uj ; δvj ).

Taking ε = min
1≤j≤K

δuj , we conclude that

[z0, z1] ⊂
K⋃
j=1

B(uj ; ε).

We now have the following situation:

• • •
z0 z1u1

By the maximum modulus principle for open ball, we see that f(z0) = f(u1).

We then continue the process (see the following diagram where the red denotes

those points t with f(t) = f(z0) and deduce that f(u1) = f(u2).

• • •
z0 z1u1 u2

•

This shows that f(z1) = f(z0) if [z0, z1] ⊂ D and by the remark in the

beginning of the proof, we conclude that f(z) is constant on D.
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corollary 5.12 Suppose a function f is continuous in a closed and bounded

region D and it is analytic and not constant in the interior of D. Then the

maximum value of |f(z)| in D, which is always reached, occurs somewhere on

the boundary of D and never in the interior.

Proof

The function f is a continuous function on a closed and bounded set and so, its

image is closed and bounded by Theorem 4.10. Let M = supz∈D |f(z)|. Then

there exist u ∈ D such that |f(w)| = M since f(D) is a closed set (see Remark

5.1). So the maximum modulus is attained. Now since f is not constant, this

value cannot be attained in the interior of D, hence the maximum modulus is

attained at ∂D.

example 5.6 (Bak-Newman, p. 84, Problem 6) Suppose f is a non-constant

analytic function in the annulus: 1 ≤ |z| ≤ 2, that |f | ≤ 1 for |z| = 1 and that

|f | ≤ 4 for |z| = 2. Prove that |f(z)| ≤ |z|2 throughout the annulus.

Solution

Let g(z) = f(z)/z2. Then from hypothesis,

|g(z)| = |f(z)|
|z|2

≤ 1

when |z| = 1 and |z| = 2. Hence, |g(z)| ≤ 1 on the boundary of the annulus.

Therefore, by maximum modulus principle, |g(z)| ≤ 1 on 1 ≤ |z| ≤ 2. This shows

that |f(z)| ≤ |z|2 on 1 ≤ |z| ≤ 2.

Remark 5.1 Let M = supz∈D |f(z)| where D is the closure of D. Then for

ε = 1/n, we know that M − ε cannot be a upper bound and hence, there exists

zn such that M − 1/n < |f(zn)| < M. We thus create a sequence {|f(zn)|} that

converges to M . Since |f | is continuous, |f(D)| is complete. Therefore |f(zn)|
converges to |f(z0)| for some z0 ∈ D and so, the maximum M is attained by

some z0 ∈ D.
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6.1 Convergence of Sequences and Series

In the proof of Theorem 4.2, we have already seen the definition of a sequence.

We needed the notion of Cauchy sequence to define complete space. We now

revisit infinite sequence.

definition 6.1 An infinite sequence of complex numbers

z1, z2, · · · , zn, · · · ,

has a limit ` if for each positive ε, there exists a positive integer Nε such that

|zn − `| < ε whenever n ≥ Nε.

Given a sequence {zk}∞k=1. We construct the sequence {Sk}∞k=1 where

Sk =

k∑
j=1

zj .

This sequence is called the sequence of partial sums associated with {zk}∞k=1.

If the new sequence {Sn}∞n=1 has a limit S, then we say that the infinite series

∞∑
k=1

zk

converges and write

∞∑
k=1

zk = S = lim
n→∞

Sn.

The expression

∞∑
k=1

zk

is called an infinite series associated with {zk}∞k=1. If the limit of the sequence
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{Sn}∞n=1 fails to exist, then we say that the infinite series

∞∑
k=1

zk

diverges.

6.2 Taylor Series

We turn now to Taylor’s Theorem.

theorem 6.1 Suppose that a function f is analytic throughout an open ball

B(z0;R). Then at each z ∈ B(z0;R), f(z) has the series representation

f(z) =

∞∑
k=0

ak(z − z0)k (|z − z0| < R),

where

ak =
f (k)(z0)

k!
, k = 0, 1, 2, · · · .

The above theorem is the familiar Taylor series (when restricted to real vari-

ables) from Calculus.

Proof

First, set z0 = 0 and suppose f is analytic in |z| < R. Let z be chosen and

suppose that |z| = r < R. Choose R1 such that r < R1 < R and let CR1 be the

circle C(0;R1) traversed in the anti-clockwise direction. By the Cauchy Integral

formula,

f(z) =
1

2πi

∫
CR1

f(s)

s− z
ds.

Now,

1

s− z
=

1

s

 1

1− z

s

 =
1

s

1 +
1

1− z

s

− 1


=

1

s

1 +
1− 1 +

z

s

1− z

s

 =
1

s

1 +

z

s

1− z

s


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=
1

s

1 +
z

s

 1

1− z

s

 =
1

s

1 +
z

s
+
(z
s

)2

+ · · ·+

(z
s

)N
1− z

s

 .

Therefore,

1

s− z
=

1

s
+

z

s2
+
z2

s3
+ · · ·+ zN−1

sN
+

zN

(s− z)sN
.

Hence

f(z) =
1

2πi

∫
CR1

f(s)

{
1

s
+

z

s2
+ · · ·+ zN−1

sN
+

zN

(s− z)sN

}
ds.

Now, the general Cauchy Integral formula says that

f (n)(0) =
n!

2πi

∫
CR1

f(s)

sn+1
ds.

Therefore,

f(z) =
1

2πi

∫
CR1

f(s)

s
ds+

z

2πi

∫
CR1

f(s)

s2
ds+ · · ·

+
zN−1

2πi

∫
CR1

f(s)

sN
ds+

1

2πi

∫
CR1

zN

(s− z)sN
ds

= f(0) +
f ′(0)

1!
z +

f (2)(0)

2!
z2 + · · ·+ f (N−1)(0)

(N − 1)!
zN−1 + ρN (z),

where

ρN (z) =
1

2πi

∫
CR1

zNf(s)

(s− z)sN
ds.

To complete our proof, it suffices to show that ρN (z) → 0 as N → ∞. Recall

that r < R1. Hence,

|s− z| ≥ |s| − |z| = R1 − r.

This implies that

|ρN (z)| ≤ rN

2π

M1

(R1 − r)RN1
2πR1 =

M1R1

R1 − r

(
r

R1

)N
,

where

M1 = max
s∈CR1

|f(s)|.

But
r

R1
< 1 and therefore,

lim
N→∞

(
r

R1

)N
= 0.



88 Series

Hence, ρN (z)→ 0 when N → 0. Thus, for each point in B(0;R),

f(z) = f(0) +
f ′(0)

1!
z +

f (2)(0)

2!
z2 + · · ·+ f (n)(0)

n!
zn + · · · .

This special case of series is known as the Maclaurin series of f(z). Setting

f (0)(z) = f(z), we may rewrite the above series as

f(z) =

∞∑
k=0

f (k)(0)

k!
zk.

We now prove the Taylor series expansion of f(z). Suppose f(z) is analytic in

|z − z0| < R. Then g(z) := f(z + z0) is analytic in B(0;R). Therefore

g(z) =

∞∑
k=0

g(k)(0)

k!
zk.

But

g(k)(0) = f (k)(0 + z0) = f (k)(z0).

Therefore,

f(z + z0) =

∞∑
k=0

f (k)(z0)

k!
zk, |z| < R.

Replacing z by z − z0, we find that

f(z) =

∞∑
k=0

f (k)(z0)

k!
(z − z0)k,

which is (6.1), with |z − z0| < R.

definition 6.2 The largest R for which a power series

S(z) =

∞∑
k=0

ak(z − z0)k

is convergent for all |z − z0| < R is called the radius of convergence of S(z).

There are several ways of computing the radius of convergence of a given power

series. We quote two of them.

theorem 6.2 Suppose L = limk→∞ |Ck|1/k exists.
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(a) If L = 0, then
∞∑
n=0

Cnz
n

converges for all z.

(b) If L =∞, then the series
∞∑
n=0

Cnz
n

converges for z = 0 only.

(c) If 0 < L <∞ then
∞∑
n=0

Cnz
n

converges for |z| < 1

L
and diverges for |z| > 1

L
.

The above result is true if we replace limk→∞ |Ck|1/k by limk→∞ |Ck+1/Ck|.

example 6.1 The radius of convergence of
∑∞
k=1 z

k is 1. This is because the

series converges to
1

1− z
for |z| < 1.

example 6.2 The power series

∞∑
n=0

zn

n!

is convergent everywhere. To show this, we compute

lim
k→∞

|Ck+1/Ck| = lim
k→∞

1

k + 1
= 0.

By the above result, we conclude that the series is convergent for all z. This

function turns out to be ez.

example 6.3 Show that

1

z2
=

∞∑
k=0

(k + 1)(z + 1)k, |z + 1| < 1.
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Solution

We first write 1/z2 as 1/(1− (z + 1))2 and then use the power series expansion

for 1/(1− u)2.

We have seen in this section that if f is analytic at z0 then f can be expanded

as a convergent power series about z0 in B(z0; r) for some r > 0, namely,

f(z) =

∞∑
n=0

an(z − z0)n.

If aj = 0 for j = 0, 1, · · · ,m, and am+1 6= 0, then we say that f has a zero of

order m at z0. When m = 1, then we say that f has a simple zero at z = z0. It

can be shown directly that z0 is a simple zero of an analytic function f if and

only if f ′(z0) 6= 0.

6.3 Laurent Series

If a function f is not analytic at a point z0, we cannot apply Taylor’s Theorem

at that point. It is, however, possible to find a series representation for f(z)

involving both positive and negative powers of z − z0. A series representation

of f(z) that involves negative powers of z − z0 is called a Laurent series of f(z)

about z0.

example 6.4 Find the Laurent expansion of

f(z) =
1 + 2z

z2 − z3

about z = 0.

Solution

The expansion is

f(z) =
1

z2

(
1 + 2z

1− z

)
=

1

z2
(1 + 2z)(1 + z + z2 + · · · ), 0 < |z| < 1,

=
1

z2

(
1 + 2z + z + 2z2 + z2 + 2z3 + · · ·

)
=

1

z2
+

3

z
+ 3 + 3z + · · · .

This series expansion is convergent on 0 < |z| < 1.

We will only discuss the case when z0 = 0.
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theorem 6.3 If f is analytic in the annulus

A = {z ∈ C|R1 < |z| < R2},

then f has a Laurent expansion

f(z) =

∞∑
k=−∞

akz
k,

where

ak =
1

2πi

∫
C

f(ζ)

ζk+1
dζ

and C = C(0;R) with R1 < R < R2.

Sketch of proof

The proof of this theorem is similar to that of Theorem 6.1. Suppose R1 < r1 <

r2 < R2. We consider the expansion of 1/(z − s), with s ∈ {z||z| = r1} or

s ∈ {z||z| = r2} in two ways.

Let C be the contour C(0; r2) traversed in counterclockwise direction, and

then meet C(0; r1), traversed in the clockwise direction and finally return to

meet C(0; r2) (see the following diagram).

C2

−C1

z

The result is a simple closed curve that encloses z. Suppose C1 and C2 are

the respective paths along C(0; r1) and C(0; r2) traversed in the anticlockwise

direction. Then

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ

=
1

2πi

∫
C2

f(ζ)

ζ − z
dζ − 1

2πi

∫
C1

f(ζ)

ζ − z
dζ = I1 + I2.
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For the first integral, expand 1/(1− z/ζ) since or |z/ζ| < 1. The result is the

same as that for Taylor’s series, i.e.

I1 =

∞∑
n=0

anz
n

with

an =
1

2πi

∫
C2

f(ζ)

ζn+1
dζ.

For the second integral, we expand 1/(1 − ζ/z) instead of 1/(1 − z/ζ) since

|ζ/z| < 1. We have

I2 =
1

2πi

∫
C1

f(ζ)

z(1− ζ/z)
dζ

=
1

2πi

∫
C1

f(ζ)

z

{
1 +

ζ

z
+ · · ·+

(
ζ

z

)N−1

+

(
ζ

z

)N
1

(1− ζ/z)

}
dζ

=

N−1∑
j=1

bj
zj

+ σN ,

where

bj =
1

2πi

∫
C1

f(ζ)ζj−1dζ

and

σN =
1

2πi

∫
C1

(
ζ

z

)N
f(ζ)

z − ζ
dζ.

Now,

|σN | ≤
1

2π
2πr1

∣∣∣r1

z

∣∣∣N M

|z| − r1
,

where |f(z)| ≤M on C1. Hence, σN → 0 as N → 0 since |r1/z| < 1.

Observe that C1 and C2 can now be replaced by a common circle C = C(0;R)

with R1 < R < R2. Next, if we set bj = a−j then the formula

a−j =
1

2πi

∫
C1

f(ζ)

ζ−j+1
dζ

holds. This means that for all j ∈ Z,

aj =
1

2πi

∫
C

f(ζ)

ζj+1
dζ.

This completes the proof of the theorem.
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corollary 6.4 If f is analytic in the annulus R1 < |z− z0| < R2, then f has

a power series representation

f(z) =

∞∑
k=−∞

ak(z − z0)k

where

ak =
1

2πi

∫
C

f(z)

(z − z0)k+1
dz

and C = C(z0;R) with R1 < R < R2.

We now give more examples of Laurent series expansions.

example 6.5 The function f(z) =
1

(z − 1)2
is analytic in 0 < |z − 1| < ∞.

The Laurent expansion of f(z) about z = 1 is just
1

(z − 1)2
.

example 6.6 The Laurent series expansion of
ez

z2
about z = 0 is

ez

z2
=

1

z2
+

1

z
+

1

2!
+
z

3!
+ · · · .

The region for which this is valid is 0 < |z| <∞.

example 6.7 e1/z has Laurent series expansion about z = 0 as

e1/z = 1 +

∞∑
n=1

1

n!

1

zn
, 0 < |z| <∞.

Note that the bn in this case are non-zero for infinitely many n.

example 6.8 Find the first 3 non-zero terms of the Laurent series expansion

of
sin z

z3(1− z)
about z = 0.
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definition 6.3 We say that z0 is an isolated singularity of f(z) if f(z) is

analytic on B(z0; r)− {z0} for some r > 0.

We now classify isolated singularities according to the Laurent series expansion

of f(z) about z0. Suppose the Laurent series expansion of f(z) about z0 is

f(z) =

∞∑
n=−∞

an(z − z0)n.

If an = 0 for n < 0, then we say that z0 is a removable singularity of f(z).

If an = 0 for n < −m for some negative integer −m, then we say that f(z)

has a pole of order m at z0. The function 1/(z − z0)m is a function with pole of

order m at z0.

If an 6= 0 for infinitely many negative integers n, then we say that z0 is

an essential singularity of f(z). The function e1/z is a function with essential

singularity at z = 0.

example 6.9 Find all functions f(z) which is analytic at all z except at 0

satisfying the condition that for all non-zero z ∈ C,

|f(z)| ≤ 1

|z|1/2
+ |z|1/2.

Solution

Let A = {z|0 < |z| < R2}. We know that if z ∈ A,

f(z) =

∞∑
k=−∞

akz
k,

where

ak =
1

2πi

∫
C

f(ζ)

ζk+1
dζ

whenever C is a simple closed curve enclosing the origin. Suppose k ≥ 1. Let

C = C(0; r). Then by ML-formula and the bound for |f(z)|,

|ak| =

∣∣∣∣∣ 1

2πi

∫
C(0;r)

f(ζ)

ζk+1
dζ

∣∣∣∣∣ ≤ 1

2π
2πr


1√
r

+
√
r

rk+1

 .

The right hand side tends to 0 as r →∞. Therefore,

ak = 0
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for k ≥ 1.

Suppose k ≤ −1. Then

|ak| =

∣∣∣∣∣ 1

2πi

∫
C(0;ε)

f(ζ)

ζk+1
dζ

∣∣∣∣∣ ≤ 1

2π
2πε


1√
ε

+
√
ε

εk+1

 .

The right hand side tends to 0 as ε→ 0. Therefore,

ak = 0

for k ≤ −1. Therefore, f(z) = a0 and it must be a constant.

6.4 Absolute Convergence, Uniform Convergence and continuity of
power series

We say that a series

S(z) =

∞∑
n=0

an(z − z0)n

is convergent if limN→∞
∑N
n=0 an(z − z0)n has a limit. If

S∗(z) =

∞∑
n=0

|an(z − z0)n|

converges then we say that the series

∞∑
n=0

an(z − z0)n

is absolutely convergent.

theorem 6.5 If

S(z) =

∞∑
k=0

an(z − z0)n

converges when z = z1, (z1 6= 0), it is absolutely convergent for every value of z

such that |z − z0| < |z1 − z0|.

Proof

Let

r =

∣∣∣∣ z − z0

z1 − z0

∣∣∣∣ < 1.
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Since
∞∑
n=0

an(z1 − z0)n

converges,

lim
n→∞

|an(z1 − z0)n| = 0.

This implies that for every ε > 0, there exists Nε ∈ Z+ such that

|an(z1 − z0)n| ≤ ε

whenever n ≥ Nε. Set ε = 1. Then for n ≥ N1,

|an(z1 − z0)n| ≤ 1.

For n ≤ N1,

|an(z1 − z0)n| ≤ max
0≤j≤N1

|aj(z1 − z0)j | = M.

Therefore,

|an(z1 − z0)n| ≤ max(1,M)

for all integers n ≥ 0.

Let

S∗` :=
∑̀
k=0

|ak(z − z0)k|.

Then

|S∗m − S∗n| =
m∑

k=n+1

|ak(z − z0)k|

=

m∑
k=n+1

|ak(z1 − z0)k|
∣∣∣∣ z − z0

z1 − z0

∣∣∣∣k
≤ max(1,M)

m∑
k=n+1

rk.

But the sequence of partial sums {G`} where G` :=
∑`
k=0 r

k is a Cauchy se-

quence. Hence for every ε > 0, there exists Nε ∈ Z+ such that

|Gm −Gn| <
ε

max(1,M)
whenever m > n ≥ Nε.

Therefore,
m∑

k=n+1

|ak(z − z0)k| < ε

whenever m > n ≥ Nε which implies that S(z) is absolutely convergent.
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In general the rate at which SN (z) =
∑N
n=0 an(z − z0)n converges to S(z)

depends on z, i.e., for any ε > 0,

|SN (z)− S(z)| < ε, whenever N ≥ Nε(z).

However, if we choose z such that |z − z0| ≤ R1 < R, where R is the radius of

convergence of S(z), then there exist an Nε which will work for all z in |z−z0| ≤
R1 < R. When Nε is independent of z, we say that S(z) is uniformly convergent.

We also say that SN (z) converges uniformly to S(z) if |z| ≤ R1 < R.

theorem 6.6 The series

S(z) =

∞∑
n=0

an(z − z0)n

is uniformly convergent for |z − z0| ≤ R1 < R, where R is the radius of conver-

gent.

Proof

Let u be fixed and |u− z0| = R1. Let z ∈ B(z0;R1). Let

ρN (z) = lim
m→∞

m∑
n=N

an(z − z0)n = S(z)−
N−1∑
n=0

an(z − z0)n.

Now, ∣∣∣∣∣
m∑

n=N

an(z − z0)n

∣∣∣∣∣ ≤
m∑

n=N

|an||z − z0|n ≤
m∑

n=N

|an||u− z0|n. (6.1)

Now let r be such that R1 < r < R and |w − z0| = r. Note that

∞∑
n=0

an(w − z0)n

converges since |w − z0| = r < R. Hence, by Theorem 6.5,

∞∑
n=0

an(u− z0)n

converges absolutely. This implies that for every ε > 0, there exists a positive

integer Nε such that

m∑
n=N

|an(u− z0)n| < ε whenever m ≥ Nε.

Therefore, by (6.1), we deduce that∣∣∣∣∣
m∑

n=N

an(z − z0)n

∣∣∣∣∣ < ε whenever m ≥ Nε,
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with Nε independent of z. Hence, S(z) converges uniformly in B(z0;R1).

theorem 6.7 A power series

∞∑
k=0

ak(z − z0)k

represents a continuous function S(z) on B(z0;R), where R is the radius of

convergence of the power series.

Proof

Let w ∈ B(z0;R) and choose δ > 0 such that B(w; δ) ⊂ B(z0;R1) for some

R1 < R. Then the series S(z) converges uniformly in B(w; δ) and this implies

that for any ε > 0, there exists a positive integer Nε such that∣∣∣∣∣
m∑
N+1

an(z − z0)n

∣∣∣∣∣ < ε

3
whenever m > N ≥ Nε (6.2)

and the above holds for any z ∈ B(w; δ). Write S(z) = SNε(z) + ρNε(z), with

ρN (z) = lim
m→∞

m∑
n=N+1

an(z − z0)n.

Now, write

|S(z)− S(w)| = |SNε(z)− SNε(w) + ρNε(z)− ρNε(w)| (6.3)

≤ |SNε(z)− SNε(w)|+ |ρNε(z)|+ |ρNε(w)|.

By (6.2),

|ρNε(z)| <
ε

3
and |ρNε(w)| < ε

3
. (6.4)

Next, since SNε(z) is a polynomial in z, SNε(z) is continuous at z = w. Therefore,

given ε > 0, there exists a δε > 0 such that

|SNε(z)− SNε(w)| < ε

3
whenever |z − w| < δε. (6.5)

By (6.4), (6.3) and (6.5), we conclude that

|S(z)− S(w)| < ε

3
+
ε

3
+
ε

3
= ε,

whenever |z − w| < min(δ, δε). This implies that S(z) is continuous at w.

6.5 Power series and Analytic functions

We have shown that if f(z) is analytic at z0, then f(z) can be expressed as a

series about z0 in B(z0; r) for some r > 0. In this section, we will show that a
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power series

S(z) =

∞∑
n=0

an(z − z0)n

which is convergent in B(z0;R) is an analytic function on B(z0;R).

theorem 6.8 Let
∞∑
k=0

ak(z − z0)k

be a convergent power series about z0 on B(z0;R). Let C be a simple closed

curve contained in B(z0;R) and g(z) be a continuous function on C. Then∫
C

g(z)

∞∑
k=0

ak(z − z0)k dz =

∞∑
k=0

ak

∫
C

g(z)(z − z0)k dz.

Proof

Since g(z) is continuous on C, there exists a positive real number M∗ such that

|g(z)| < M∗. Let ε > 0. There exists a positive integer Nε such that∣∣∣∣∣
∞∑

k=n+1

ak(z − z0)k

∣∣∣∣∣ < ε

LM∗

for all n ≥ Nε. Then∣∣∣∣∣
∫
C

g(ζ)S(ζ)dζ −
n∑
k=0

ak

∫
C

g(ζ)(ζ − z0)kdζ

∣∣∣∣∣ =

∣∣∣∣∣
∫
C

g(ζ)

∞∑
k=n+1

ak(ζ − z0)kdζ

∣∣∣∣∣
< LM∗

ε

LM∗
= ε

whenever n ≥ Nε. Hence the result.

First, we observe that S(z) is continuous on B(z0;R) by Theorem 6.7. When

g(z) = 1, we know that ∫
C

(z − z0)ndz = 0

for any simple closed curve and therefore, if S(z) is a convergent power series,

then by Theorem 6.8, ∫
C

S(z)dz = 0

for any closed curve in |z − z0| ≤ R1 < R. In particular,∫
∂T

S(z)dz = 0
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for any triangular contour ∂T contained in B(z0;R). By Morera’s Theorem, we

conclude the following:

theorem 6.9 Let S(z) be a convergent power series on B(z0;R). Then S(z)

is an analytic function on B(z0;R).

example 6.10 Let

f(z) =


sin z

z
when z 6= 0

1 when z = 0.

The power series for sin z/z is

1− z2

3!
+
z4

5!
− · · · =: S(z)

and this series is convergent for all z except at z = 0. But S(0) = f(0). Therefore,

f(z) is the power series S(z) and it is entire since the power series S(z) converges

for all z ∈ C.

Theorem 6.8 shows that if g(ζ) = 1 and C is the line segment from 0 to z and

F (z) =

∫
[0,z]

f(ζ) dζ,

then

f(z) =

∞∑
n=0

anz
n

implies that

F (z) =

∞∑
n=0

an

∫
[0,z]

ζndζ =

∞∑
n=0

an
n+ 1

zn+1.

In other words, we can obtain the power series representation of the primitive of

f(z) from the power series representation of f(z). We next determine the power

series of f ′(z) from the power series representation of f(z).

theorem 6.10 A convergent power series

S(z) =

∞∑
n=0

an(z − z0)n
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can be differentiated term by term. That is, at each point z interior to the circle

of convergence of that series,

S′(z) =

∞∑
n=1

nan(z − z0)n−1.

Proof

Let B(z0;R) be the region for which S(z) is convergent. Let z ∈ B(z0;R) and

let C ⊂ B(z0;R) be a simple closed curve enclosing z and suppose C is traversed

in the counterclockwise direction. We let

g(ζ) =
1

2πi

1

(ζ − z)2

at each point of ζ ∈ C. Since g(ζ) is continuous on C, Theorem 6.8 implies that∫
C

g(ζ)S(ζ)dζ =

∞∑
n=0

an

∫
C

g(ζ)(ζ − z0)ndζ.

Now, S(ζ) is analytic inside and on C and this enables us to write∫
C

g(ζ)S(ζ)dζ =
1

2πi

∫
C

S(ζ)

(ζ − z)2
dζ = S′(z).

Furthermore,∫
C

g(ζ)(ζ − z0)ndζ =
1

2πi

∫
C

(ζ − z0)n

(ζ − z)2
dζ = n(z − z0)n−1, n = 1, 2, · · · .

Thus, we find that

S′(z) =

∞∑
n=1

ann(z − z0)n−1.

As an application of the above theorem, we deduce that the power series

expansion

sin z =

∞∑
k=1

(−1)k−1 z2k−1

(2k − 1)!

leads to

cos z =

∞∑
k=0

(−1)k
z2k

(2k)!
.

One can also use the theorem to deduce from

1

1− z
=

∞∑
k=0

zk
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that for positive integer n,

1

(1− z)n
=

∞∑
k=0

(−n)(−n− 1) · · · (−n− k + 1)

k!
(−z)k.

We have seen in Theorem 6.1 that if f(z) is analytic at z0, then f(z) can be

written as a Taylor series on B(z0; r) for some r > 0. We now use Theorem 6.8

to show that the power series expansion of an analytic function f(z) about z0 is

unique on B(z0; r). Suppose

∞∑
k=0

ak(z − z0)k

is another power series expansion of f(z) at z0. Let C = C(z0; δ) be contained

in B(z0; r). Let

g(ζ) =
1

2πi

1

(ζ − z0)N+1

in Theorem 6.8. Then

1

2πi

∫
C

f(ζ)
1

(ζ − z0)N+1
dζ =

1

2πi

∫
C

S(ζ)
1

(ζ − z0)N+1
dζ

=

∞∑
k=0

ak

(
1

2πi

∫
C

(ζ − z0)k

(ζ − z0)N+1
dζ

)
.

This implies that

aN =
f (N)(z0)

N !
.

Hence, the power series expansion of f(z) about z0 must coincide with the Taylor

series expansion of f(z) about z0 for every z ∈ B(z0; r).

We have shown that if R is the radius of convergent of a power series about

z0, then the power series converges uniformly in B(z0;R1) with R1 < R. In a

similar way, we can prove that if

T (z) =

∞∑
n=1

bn
(z − z0)n

is convergent on |z − z0| > r, then T (z) is converges uniformly in |z − z0| ≥ r,

with r1 > r. Hence, we would also have∫
C

g(ζ)

∞∑
n=1

bn
(ζ − z0)n

dζ =

∞∑
n=1

bn

∫
C

g(ζ)

(ζ − z0)n
dζ,

for any g(z) continuous on C, and C contained in |z − z0| > r, the region of

convergence of
∞∑
n=1

bn
(z − z0)n

.
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Combining the series involving positive and negative powers of (z − z0) we

conclude that if

f(z) =

∞∑
n=−∞

an(z − z0)n

is convergent in r < |z − z0| < R and C is in the region, then∫
C

g(ζ)f(ζ)dζ =

∞∑
n=−∞

an

∫
C

g(ζ)(ζ − z0)ndζ.

This would imply the Laurent series of a function f(z) in r < |z − z0| < R is

unique.



7 Uniqueness Theorem and
Maximum Modulus Principle

7.1 Uniqueness Theorem for Power series

Let f(z) be an analytic function on B(z0; r). If there exists positive r < R such

that f(z) = 0 on B(z0; ε), then f (n)(z) = 0 on B(z0; ε). Then the formula

f (n)(z0) =
n!

2πi

∫
C(z0;r)

f(ζ)

(ζ − z0)n+1
dζ = 0

for all non-negative integers n. Since

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n

on B(z0; r) and f (n)(z0) = 0, we deduce the following:

theorem 7.1 If f(z) is an analytic function on B(z0; r) and f(z) = 0 on

B(z0; ε) for some 0 < ε < r then

f(z) = 0

on B(z0; r).

From Theorem 7.1, we know that if f(z) is analytic on B(u; r) and f(z) van-

ishes on B(u; ε) for some 0 < ε < r, then f(z) vanishes on B(u; r).

In our next theorem, we show a stronger version of Theorem 7.1. We show that

f(z) vanishes on B(u; r) ⊂ D when there is a sequence {wk} ⊂ B(u; r) which

converges to u for which f(wk) = 0 for k ∈ Z+.

theorem 7.2 Suppose f(z) is analytic on a region D and is zero at all points

of a sequence {wk}∞k=1 which converges to u ∈ D. Then there exists a positive

real number r such that B(u; r) ⊂ D and f(z) = 0 for all z ∈ B(u; r).

Proof

Since f(z) is analytic at u, f(z) has a power series expansion representation S(z)
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given by

S(z) =

∞∑
n=0

an(z − u)n

for z ∈ B(u; ε). Since a convergent power series S(z) is continuous,

a0 = S(z0) = lim
k→∞

S(wk) = 0.

Next,

a1 =
S(z)

z − u
− a2(z − u)− a3(z − u)2 − · · · .

Let z = wk. We find that

a1 = −a2(wk − u)− a3(wk − u)2 − · · ·

since S(wk) = 0. Hence,

a1 = lim
k→∞

(
−a2(wk − u)− a3(wk − u)2 − · · ·

)
= 0

since the power series is continuous. Suppose ai = 0, for 0 ≤ i ≤ n. Then

an+1 = lim
k→∞

(
−an+2(wk − u)− an+3(wk − u)2 − · · ·

)
= 0.

Therefore, ai = 0 for all i ∈ N. This implies that S(z) = 0 for all z ∈ B(u; ε).

Now, f(z) vanishes on B(u; ε) implies that f(z) vanishes on B(u; r) whenever

B(u; r) ⊂ D by uniqueness of power series.

Remark 7.1 In the above proof, we have used the fact that if f(z) is a continuous

function in D and {wk}∞k=1 is a sequence in D such that

lim
k→∞

wk = u

then

lim
k→∞

f(wk) = f(u).

In Theorem 7.2, we show that the vanishing of f(z) on B(u; r) follows from

the existence of a sequence of zeroes of f(z) approaching u ∈ D. Our next result

shows that with the hypothesis of Theorem 7.2, we can conclude that f(z) = 0

on D (instead of its vanishing on B(u; r) ⊂ D for some r > 0).

definition 7.1 Let f be continuous on a region D. We say that u ∈ D is

a limit of zeroes of f if there exists a sequence {wk} such that wk → u, with

f(wk) = 0.
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theorem 7.3 Suppose f(z) is analytic in a region D and f(wn) = 0 where

wn → u ∈ D. Then f(z) = 0 in D.

Proof

Step 1: Let

A = {z ∈ D : z is a limit of zeros of f}.

Note that A 6= φ since u ∈ A. Let B = D\A. Note that D = A∪B and A∩B = φ.

Step 2: We now show that A is open. Let z′ ∈ A. Since z′ is a limit of zeroes

of f(z), there is a sequence {wk} with wk → z′ such that f(wk) = 0 for all non-

negative integers k. By Theorem 7.2, we deduce that f(z) vanishes on B(z′; r) ⊂
D. Now, each w ∈ B(z′; r) is a limit of zeros of f(z) since f(w) = 0 for all

w ∈ B(z′; r). Therefore B(z′; r) ⊂ A, which implies that A is an open set in C.

Step 3: Next we show that B is open. Suppose z∗ ∈ B. Then since z∗ is not

a limit of zeros of f , there exist an open set B(z∗, δ) for which f(z) 6= 0 for

all z ∈ B(z∗, δ) except possibly that f(z∗) = 0. This implies that none of the

elements in the open set is a limit of zeros of f and so they are all in B. Hence,

B is open. But D is connected and therefore cannot be a union of two open sets.

Since we have noted that A is non-empty by Step 1, this implies that B = φ.

Hence A = D and every element z ∈ D is a limit of zeros of f and hence f(z) = 0

in D.

corollary 7.4 If f(z) and g(z) are analytic in a region D and agree at a set

of points {wk} with limk→∞ wk = u where u ∈ D, then f(z) = g(z) in D.

This is known as the Uniqueness Theorem for analytic functions. This result

explains why series expansions for real functions such as ex, sinx etc are the

same as those for ez, sin z etc..

example 7.1 The formula

ex =

∞∑
n=0

xn

n!

for x ∈ R implies, by the Uniqueness Theorem, that

ez =

∞∑
n=0

zn

n!

for z ∈ C. These two formulas look the same but they are not. For example,
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when z = iy, y ∈ R,

eiy = cos y + i sin y =

∞∑
n=0

(−1)n
y2n

(2n)!
+ i

∞∑
n=0

(−1)n
y2n+1

(2n+ 1)!
,

giving power series expansions for cos y and sin y. Note that these series cannot

be obtain from the power series expansion of ex.

example 7.2 Let f and g be analytic functions on B(0; 1) with g(z) 6= 0 for

all z ∈ B(0; 1). Suppose for all integers n ≥ 1,

f ′(1/n)

f(1/n)
=
g′(1/n)

g(1/n)
.

Show that f/g is a constant on B(0; 1).

Solution

Let G = (f/g)′. Then

G(1/n) =
f ′(1/n)g(1/n)− f(1/n)g′(1/n)

g2(1/n)
= 0.

Since limn→∞ 1/n = 0 ∈ B(0; 1) which implies that 0 is the limit of zeroes of

G(z), we conclude by Uniqueness Theorem, G(z) = 0 on B(0; 1). Since G =

(f/g)′, we conclude that f/g is a constant on B(0; 1).

We end this section with a final application of the Uniqueness Theorem.

example 7.3 Show that if f is a non-constant analytic on a region D and

F ⊂ D is a closed and bounded set, then F contains finitely many zeroes of f .

Solution

Suppose the contrary. Then F contains infinitely many zeroes of f . Since F

is closed and bounded, it is compact. Therefore, F can be covered by finitely

many open balls of radius 1. Since there are infinitely many zeroes of f in F

and the number of open balls is finite, there exists an open ball (may be more

than one such open balls) O1 which contains infinitely many zeroes of f . The

set F1 = O1 ∩ F is a closed subset of F . Next, F1 is compact. Therefore there

are finitely many open balls of radius 1/2 that cover F1. We choose one such

open balls O2 which contains infinitely many zeroes of f . Let F2 = O2 ∩ F . By
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continuing with this process and reducing the radius of the ball by a factor of

1/2 at each stage, we obtain a nested closed sets

· · · ⊂ F2 ⊂ F1 ⊂ F.

Note that since Oj is an open ball of radius 1/2j , the diameter of Fj tends to 0

as j tends to infinity. By Cantor’s intersection Theorem,⋂
j

Fj = {w}.

Now, in each Fj , we choose a distinct zero of f and called in zj . Note that

|zj − w| ≤ 1/2j

since w ∈ Fj . Therefore zj tends to w as j tends to infinity. Finally,

0 = lim
j→∞

f(zj) = f(w).

Therefore w is a limit of zeroes of f and this implies that f is identically 0,

which contradicts to the assumption that f is non-constant. Hence, there are

only finitely many zeroes of f in F .

example 7.4 (Bak-Newman (First edition), p. 74, Problem 6) Show that if f

is entire and |f(z)| ≥ |z|N for sufficiently large z. then f must be a polynomial

of degree at least N .

Solution

Observe that if w is a zero of f(z), then from the power series expansion of f at

w, we find that

f(z) = (z − w)m
∞∑

k=m+1

ak(z − w)k.

So we may write

f(z) = (z − w)mf1(z),

where f1(w) 6= 0.

Let R > 0 be sufficiently large so that for |z| ≥ R, |f(z)| ≥ |z|N . By Uniqueness

Theorem, we know that the number of zeroes of f is finite in B(0;R) (see the

previous example for more details). Let z1, z2, · · · , z` (not necessarily distinct)

be all the zeroes of f in B(0;R). By the remark in the beginning of the proof,

we may write

f(z) = (z − z1) · · · (z − z`)g(z)

where g(z) 6= 0 in B(0;R). Let

P (z) = (z − z1) · · · (z − z`).
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We have observed that the function g(z) 6= 0 in B(0;R). If g(v) = 0 for some

v such that |v| ≥ R, then f(v) = P (v)g(v) = 0. This means that |f(v)| = 0,

which is a contradiction since |f(v)| ≥ |v|N > 0 since |v| ≥ R. Therefore, g(z) is

a non-vanishing entire function and h(z) = 1/g(z) is entire.

Now, for |z| ≥ R, |P (z)| ≤ A|z|` for some A > 0 and |f(z)| ≥ |z|N . Therefore,

|h(z)| ≤ A|z|`−N ,

for |z| ≥ R. For |z| ≤ R,

|h(z)| ≤M

since h is continuous. Hence, h(z) is an entire function which satisfies an inequal-

ity of the form

|h(z)| ≤ C|z|`−N +D,C > 0, D > 0,

and for all z ∈ C. By extended Liouville Theorem, h(z) is a polynomial of degree

at most `−N . Now, f(z)h(z) = P (z). Since f(z) is entire, the polynomial h(z)

must divide P (z) and therefore, f(z) is a polynomial. The sum of the degrees of

f(z) and h(z) is equal to the degree of P (z). In other words,

m = degf(z) + degh(z) ≤ degf(z) +m−N.

Therefore,

degf(z) ≥ N.

7.2 Minimum Modulus Principle and Open Mapping Theorem

We begin this section by proving the Minimum Modulus Principle.

theorem 7.5 Let f(z) be a non-constant analytic function in a region R and

f(z) 6= 0 for all z ∈ R, then there is no point α ∈ R satisfying the relation

|f(α)| ≤ |f(z)| for all z ∈ R.

Proof

Since f(z) 6= 0 for all x ∈ R, the function g(z) = 1/f(z) is analytic in R. By

maximum modulus principle, there does not exist α ∈ R such that |g(z)| ≤ |g(α)|
for all z ∈ R. This translates to the statement that there is no α ∈ R that satisfies

the inequality |f(α)| ≤ |f(z)| for all z ∈ R.

Remark 7.2 The above theorem implies that if f(z) is a non-constant analytic

function in a bounded region R and continuous on ∂R, then the minimum of

|f(z)| must occur at ∂R.
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We have seen that if f(z) is an analytic function that is purely imaginary then

f(z) is a constant. This is a special case of an important result known as open

mapping theorem.

theorem 7.6 The image of an open set under a nonconstant analytic mapping

is an open set

Proof

We will give a proof due to C. Carathéodory. Our aim is to show that if X is an

open set, then

f(X) = {f(z)|z ∈ X}

is an open set. Let β ∈ f(X). Then there exists α ∈ X such that

f(α) = β.

Since α ∈ X and X is open, there exists R > 0 such that

B(α;R) ⊂ X.

By uniqueness theorem, there exists 0 < r < R such that for all z ∈ C(α; r),

f(z) 6= β. This implies that there exists ε > 0 such that

2ε = min
z∈C(α;r)

|f(z)− β|.

We will show that B(β; ε) is contained in f(X) and this will imply that f(X)

is open. Let u ∈ B(β; ε). If u 6∈ f(X) then f(z) − u 6= 0 for all z ∈ B(α; r).

This implies, by Remark 7.2, that the minimum of |f(z)−u| must occur at some

v ∈ C(α; r). In other words, for all z ∈ B(α; r),

|f(z)− u| > |f(v)− u|

for some v ∈ C(α; r). Now, for z ∈ B(α; r),

|f(z)−u| > |f(v)−u| = |f(v)−β+β−u| ≥ |f(v)−β|−|β−u| ≥ 2ε−ε = ε, (7.1)

where we have used the fact that the minz∈C(α;r) |f(v)−β| = |f(v)−β| = 2ε and

that u ∈ B(β; ε). Substituting z = α to the left hand side of (7.1) and observing

that |f(α)− u| = |β − u| < ε, we conclude from (7.1) that

ε > |β − u| = |f(α)− u| > ε,

which is a contradiction. Hence, f(z) = u for some z ∈ B(α; r). In other words,

B(β; ε) ⊂ f(B(α; r)) ⊂ f(X)

and f(X) is open.
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7.3 Appendix: Polygonally connected and connected

In this appendix, we show that in C, polygonally connected is equivalent to

connected. Recall that a set D is disconnected if there exists nonempty disjoint

open sets A and B such that

D = A ∪B.

Otherwise, D is said to be connected.

theorem 7.7 An open set D is connected if and only if it is polygonally

connected

Proof

Suppose D is connected. Let u ∈ D and let

A = {s ∈ D|s is connected to u by a polygonal line in D}.

Let B = D\A, i.e., every point in B is not connected to u by a polygonal line

in D. Note that A 6= φ because u ∈ A. Also, D = A ∪B and A ∩B = φ.

We now show that A is open. If z ∈ A, then B(z; r) ⊂ D for some r > 0

since D is open. But in B(z; r), any two points are polygonally connected. Now

z ∈ A implies that z is polygonally connected to u. This implies that all points

in B(z; r) are polygonally connected to u. Hence B(z; r) ⊂ A. This implies that

A is open.

Suppose B 6= φ. Let z′ ∈ B. Then there exists r′ > 0 such that B(z′; r′) ⊂
D. Note that none of the points in B(z′; r′) is polygonally connected to u, for

otherwise, z′ would be polygonally connected to u and z′ would not be in B.

Hence, B(z′; r′) ⊂ B and B is open. But now D is connected and D = A ∪ B
where A and B are open sets. Since A is non-empty, the only way this can happen

is B = φ. Hence D = A and every point in D is polygonally connected to u and

hence, the open set D is polygonally connected.

Conversely, suppose D is not connected. Then let A and B be open disjoint

sets such that

D = A ∪B.

Let a ∈ A and b ∈ B. Suppose that there exists a polygonal line connecting a

to b. We may assume this line to be the line segment [a, b]. For if not, there is a

line contained in the polygonal path that joins a point a∗ in A with a point b∗

in B for the first time. We then replace a by a∗ and b by b∗.

Now, let γ : [0, 1]→ D be γ(t) = a(1− t) + bt. Let

t∗ = sup{t ∈ [0, 1]|γ(t) ∈ A}.

Since A is open, t∗ > 0. Similarly since B is open, t∗ < 1. Let z∗ = γ(t∗). Note

that z∗ 6∈ A. For if z∗ ∈ A, then since A is open, there exists ε > 0 such that
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B(z∗; ε) ⊂ A. By continuity of γ, we conclude that there exists δε > 0 such that

if |t− t∗| < δε then γ(t) ∈ B(z∗; ε). But this means that γ(t∗ + δε/2) ∈ A and t∗

is not an upper bound for the set {t ∈ [0, 1]|γ(t) ∈ A}.
Similarly, B does not contain z∗. For if B contains z∗ then there exists ε′ > 0

such that if |t−t∗| < δε′ , then γ(t) ∈ B(z∗; ε′) ⊂ B. This implies that γ(t) ∈ B for

t∗−δ′ε < t and so, t∗ is not the least upper bound for the set {t ∈ [0, 1]|γ(t) ∈ A}.
We must therefore conclude that such a line segment does not exist.



8 The Residue Theorem

8.1 Residues

When z0 is an isolated singularity of f , there exist an R such that f is analytic

on 0 < |z − z0| < R. Therefore f(z) has a Laurent series expansion given by

Theorem 6.3, namely,

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn
(z − z0)n

,

where

an =
1

2πi

∫
C1

f(z)

(z − z0)n+1
dz, n = 0, 1, 2, · · · ,

and

bn =
1

2πi

∫
C0

f(z)

(z − z0)−n+1
dz, n = 1, 2, · · · .

When n = 1,

b1 =
1

2πi

∫
C

f(z) dz,

and this is called the residue of f(z) at the isolated singular point z0. It is

denoted by Res(f(z); z0).

example 8.1 Let

f(z) =
e−z

(z − 1)2
.

Find Res(f(z), 1).

Solution

The function f(z) =
e−z

(z − 1)2
is analytic in |z| ≤ 2 except at the isolated singu-

larity z = 1. By Cauchy Integral Formula,∫
C

e−z

(z − 1)2
dz = −2πi

e
.
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Thus, the residue of f(z) at z = 1 is

Res(f, 1) = −1

e
.

example 8.2 Let f(z) = e1/z2 . Find Res(f(z), 0).

Solution

We have

e1/z2 = 1 +
1

z2
+

1

2!z4
+ · · · .

The coefficient of
1

z
is 0. Therefore∫

C

e1/z2 dz = 0.

This implies Res(f ; 0) = 0.

This example cannot be deduced from Cauchy’s Integral Formula.

8.2 Residue Theorem

If a function f has only a finite number of singular points interior to a given

simple closed contour C, they must be isolated. The following Theorem gives us

a formula for evaluating ∫
C

f(z)dz

if f has a finite number of singular points interior to C.

theorem 8.1 (The Residue Theorem) Let C be a positively oriented simple

closed contour within and on which a function f is analytic except for a finite

number of singular points z1, z2, · · · , zn interior to C. If B1, B2, · · · , Bn denote

the residues of f at these respective points, then∫
C

f(z)dz = 2πi(B1 +B2 + · · ·+Bn).
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Proof

By Cauchy Goursat Theorem, we have∫
C

f(z)dz =

∫
C1

f(z)dz + · · ·+
∫
Cn

f(z)dz.

Since ∫
Ci

f(z)dz = 2πiBi,

we immediately obtain the result.

example 8.3 Suppose C is the circle |z| = 2 described anticlockwise. Evaluate∫
C

5z − 2

z(z − 1)
dz.

Solution

Note that z = 0 and z = 1 are the two singularities of the function

f(z) =
5z − 2

z(z − 1)
.

5z − 2

z(z − 1)
=

2

z
+ 3 + · · · , |z| < 1

and

5z − 2

z(z − 1)
=

(
5 +

3

z − 1

)
(1− (z − 1) + (z − 1)2 + · · · ), |z − 1| < 1,

therefore, Residue of f(z) at z = 0 is 2 and at z = 1 is 3. Hence,∫
C

f(z)dz = 2πi(2 + 3) = 10πi.

Alternatively one may use Cauchy Integral Formula.

theorem 8.2 If a function f is analytic everywhere in the finite plane except

for a finite number of singular points interior to a positively oriented simple

closed contour C, then∫
C

f(z)dz = 2πiRes

(
1

z2
f

(
1

z

)
; 0

)
.
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Proof

Let C(0;R) be a circle with R large enough so that the circle enclosed C. Then∫
C

f(z)dz =

∫
C(0;R)

f(z)dz.

Write ∫
C(0;R)

f(z)dz =

∫ 2π

0

f(Reit)iReitdt.

Replacing t by −s, we find that

−
∫ −2π

0

f(Re−is)iRe−isds.

We now convert this line integral back to contour integral by letting z = eis/R

and deduce that

−i
∫ −2π

0

f(R/eis) · R
2

e2is
· e

is

R
ds = −

∫
C′(0;1/R)

f(1/z)

z2
dz

where C ′(0, 1/R) is the circle centered at 0 with radius 1/R traversed in clock-

wise direction. Now, this gives∫
C(0;R)

f(z)dz =

∫
C(0;1/R)

f(1/z)

z2
dz

where C(0; 1/R) is traversed in anti-clockwise direction and the proof is com-

plete.

example 8.4 Use Theorem 8.2 to solve Example 8.3.

Solution

Let f(z) = (5z − 2)/(z(z − 1)). Then

1

z2
f(1/z) =

5− 2z

z

(
1 + z + z2 + · · ·

)
and so Res(1/z2f(1/z), 0) = 5 and hence the result.

8.3 Evaluations of improper integrals

An important application of the theory of residues is the evaluation of certain

types of definite improper integral arising from real analysis.
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In Calculus we encounter improper integral of continuous function f(x) over

semi infinite interval x ≥ 0:∫ ∞
0

f(x)dx = lim
R→∞

∫ R

0

f(x)dx.

When the limit on the right exists, the improper integral is said to converge and

its value is the value of the limit. The improper integral
∫∞
−∞ f(x)dx is defined

by ∫ ∞
−∞

f(x)dx = lim
R1→∞

∫ 0

−R1

f(x)dx+ lim
R2→∞

∫ R2

0

f(x)dx.

When both integrals on the right hand side converges, we say that
∫∞
−∞ f(x)dx

converges. It may happen that the integrals on the right side diverge but the

limit

lim
R→∞

∫ R

−R
f(x)dx

exists. In this case, we call

lim
R→∞

∫ R

−R
f(x)dx

the Cauchy principal value of the integral of
∫∞
−∞ f(x)dx and write

P.V.

∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

−R
f(x)dx.

Remark 8.1 The Cauchy principal value of the integral
∫∞
−∞ f(x)dx may ex-

ist without
∫∞
−∞ f(x)dx being defined. For example, if f(x) = 2x/(1 + x2),∫∞

−∞ f(x)dx is divergent but its principal value is 0. However, when f(x) is

an even function, i.e., f(x) = f(−x), both P.V.
∫∞
−∞ f(x)dx and

∫∞
−∞ f(x)dx

coincide.

In this section, we will use residue theorem to evaluate different type of inte-

grals.

example 8.5 Evaluate ∫ ∞
−∞

2x2 − 1

x4 + 5x2 + 4
dx.

Since f(x) is even it suffices to evaluate the Cauchy Principal value of the

integral by Example 5.4.1. Consider the function

f(z) =
2z2 − 1

z4 + 5z2 + 4
.
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Note that

z4 + 5z2 + 4 = (z2 + 4)(z2 + 1).

Hence, f(z) has poles at ±2i and ±i. Let R > 2.

CR

2i

i

From the Residue Theorem, we know that∫
CR

f(z)dz = 2πi(Res(f(z); i) + Res(f(z); 2i)).

Now,

Res(f(z); i) =
i

2
,

while

Res(f(z); 2i) = −3i

4
.

Hence, ∫
ΓR

f(z)dz =
π

2
.

Let ΓR = [−R,R] ∪ CR, where CR is the arc from R to −R and [−R,R] is the

line segment [−R,R]. Now, on CR,∣∣∣∣ 2z2 − 1

z4 + 5z2 + 4

∣∣∣∣ ≤ 2R2 + 1

R4 − 5R2 − 4
.

Hence, ∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ πR(2R2 + 1)

R4 − 5R2 − 4
,

which tends to 0 as R→∞. Therefore,

lim
R→∞

∫
CR

f(z)dz = 0.

Hence,

lim
R→∞

∫ R

−R
f(x)dx = lim

R→∞

∫
ΓR

f(z)dz =
π

2
.
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example 8.6 Show that ∫ ∞
0

dx

(x2 + 1)2
=
π

4
.

8.4 Improper Integrals involving cos

We now evaluate improper integrals of the type∫ ∞
−∞

P (x) cosxdx.

example 8.7 Show that ∫ ∞
−∞

cosx

(x2 + 1)2
dx =

π

e
.

Consider f(z) =
eiz

(z2 + 1)2
.

CR

i•

Note that ∫
CR

f(z)dz = 2πiRes(f(z); i).

Let

φ(z)

(z − i)2
=

eiz

(z − i)2(z + i)2
,

or

φ(z) =
eiz

(z + i)2
.



120 The Residue Theorem

By Cauchy Integral formula,∫
CR

eiz

(z − i)2(z + i)2
dz =

∫
CR

φ(z)

(z − i)2
dz = 2πiφ′(i).

Now,

φ′(z) =
−2eiz

(z + i)3
+

ieiz

(z + i)2
.

Hence

φ′(i) =
−i
2e
.

Therefore, ∫
ΓR

f(z)dz =
π

e
.

Now split ΓR = [−R,R] ∪ CR. Then on CR∣∣∣∣ eiz

(z2 + 1)2

∣∣∣∣ ≤ 1

(R2 − 1)2
,

which implies immediately that∫
CR

f(z)dz → 0

as R→∞.
Hence, we conclude that ∫ ∞

−∞

eix

(x2 + 1)2
dx =

π

e
.

Splitting eix = cosx+ i sinx, we deduce our result.

Remark 8.2 In the computation of the residue Res(f(z); i), we can also compute

the Laurent series expansion of

1

(z − i)2

eiz

(z + i)2
=

1

(z − i)2

e−1

(2i)2
(1 + (z − i)i+ · · · )

(
1− 2

(z − i)
2i

+ · · ·
)
.

The coefficient of (z − i)−1 in this expansion is (2ie)−1.

8.5 Euler’s identities

The Bernoulli numbers Bm are defined as f (m)(0) where

f(z) =
z

ez − 1
.

In other words, we have

z

ez − 1
=

∞∑
m=0

Bm
zm

m!
.
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The first few values of Bm are

B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1

42

B7 = 0, B8 = − 1

30
, B9 = 0, B10 =

5

66
, B11 = 0, B12 = − 691

2730
.

In this section, we will show that

∞∑
k=1

1

k2m
=

(−1)m+1(2π)2mB2m

2 · (2m)!
. (8.1)

Using the values of B2 and B4, we deduce that

∞∑
k=1

1

k4
=
π4

90
.

We begin with the integral

1

2πi

∫
CN

1

ζ2m+1

2πiζ

e2πiζ − 1
dζ,

where CN is the following contour:

• •
N N + 1

••
−N−N − 1

L2

L3

L4

L1

The function

f(z) =
1

z2m+1

2πiz

e2πiz − 1
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has poles 0, ±k, k = 1, 2, · · · , N which are enclosed by CN . This implies that

1

2πi

∫
CN

f(ζ)dζ = Res(f(z); 0) +

N∑
k=−N
k 6=0

Res(f(z); k).

By using the Laurent series expansion of f(z), we deduce that

Res(f(z); 0) =
B2m(−1)m(2π)2m

(2m)!

and

Res(f(z); k) = lim
z→k

f(z)(z − k) =
1

k2m
.

To derive (8.1), it suffices to show that

1

2πi

∫
CN

f(ζ)dζ → 0

as N → ∞. We will only show that the integrals over L1 and L2 vanishes as

N →∞. The computations for the integrals over L3 and L4 are similar.

We first give an upper bound for
∣∣1− e2πiz

∣∣ on L1 and L2. We first parametrize

L1 by ζ(t) = N + 1/2 + it,−(N + 1/2) ≤ t ≤ N + 1/2. Note that∣∣∣1− e2πi(N+1/2+it)
∣∣∣ =

∣∣1 + e−2πt
∣∣ ≥ 1

and this gives the lower bound of
∣∣1− e2πiz

∣∣ on L1.

On L2, we use the parametrization ζ(t) = t + i(N + 1/2),−(N + 1/2) ≤ t ≤
N + 1/2. Note that ∣∣∣1− e2πi(t+(N+1/2)i)

∣∣∣ ≥ 1− e−2π(N+1/2).

Write

e−2πNe−π ≤ e−π

and hence

1− e−2π(N+1/2) ≥ 1− e−π > 0.

This gives us the lower bound of
∣∣1− e2πiz

∣∣ on L2.

With these lower bounds, we deduce that∣∣∣∣∫
L1

f(ζ)dζ

∣∣∣∣ ≤ 2N + 1

(N + 1/2)2m+1
2π(N + 1/2)

and ∣∣∣∣∫
L2

f(ζ)dζ

∣∣∣∣ ≤ 2N + 1

(N + 1/2)2m+1

2π(N + 1/2)

1− e−π

and this implies that both integrals over L1 and L2 vanishes as N → ∞. This

completes the proof of (8.1).



8.6 Residue Theorem and identities associated with binomial coefficients 123

8.6 Residue Theorem and identities associated with binomial
coefficients

In combinatorics, we often encounter combinatorial identities. In the next two

examples, we show how such identities can be derived using residue theorem.

example 8.8 Show that

n∑
k=0

(
n

k

)2

=

(
2n

n

)
.

Solution

We observe that (
2n

n

)
=

1

2πi

∫
C(0;1)

(1 + ζ)2n

ζn+1
dζ.

The integral on the right hand side can be written as

1

2πi

∫
C(0;1)

(1 + ζ)n
(

1 +
1

ζ

)n
ζ

dζ =
1

2πi

∫
C(0;1)

1

ζ

(
n∑
k=0

n∑
`=0

(
n

k

)(
n

`

)
ζk−`

)
dζ

=

n∑
k=0

(
n

k

)2

since

1

2πi

∫
C(0;1)

ζn−`−1 dζ = 1

if and only if n− `− 1 = −1 or n = `.

example 8.9 Evaluate
∞∑
n=0

(
2n

n

)
1

5n
.

Solution

Observe that (
2n

n

)
1

5n
=

1

2πi

∫
C

(1 + z)2n

5nzn+1
dz

where C is the circle C(0; r) traversed in the counterclockwise direction and
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r > 0 to be chosen later. This implies that

∞∑
n=0

(
2n

n

)
1

5n
=

1

2πi

∫
C(0;r)

1

z

∞∑
n=0

(1 + z)2n

(5z)n
dz =

1

2πi

∫
C(0;r)

5

3z − 1− z2
dz,

where r can be chosen to be 1 to ensure that on |z| = 1,∣∣∣∣ (1 + z)2

(5z)

∣∣∣∣ ≤ 4

5

and that the use of the expansion

1

1− u
=

∞∑
n=0

un

is valid. The function 3z−1−z2 has zeroes
3

2
±
√

5

2
and only

3

2
−
√

5

2
is enclosed

by C(0; r). Hence,

∞∑
n=0

(
2n

n

)
1

5n
=

1

2πi

∫
C(0;r)

1

z

∞∑
n=0

(1 + z)2n

(5z)n
dz

=
1

2πi

∫
C(0;r)

5

3z − 1− z2
dz

= Res

(
− 5

z2 + 1− 3z
,

3−
√

5

2

)
=
√

5.

8.7 An improper integral involving sinx

We have encounter integrals that involve cosx. In this section, we will show the

evaluations of a improper integral that involve sinx.

example 8.10 Evaluate ∫ ∞
−∞

sinx

x
dx.

Solution

We first establish a useful inequality called the Jordan inequality given by∫ π

0

e−R sin θ dθ <
π

R
, (8.2)

where R is a real positive number. To prove (8.2), we note that for 0 ≤ θ ≤ π/2,

sin θ ≥ 2

π
θ.
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This follows immediately from the observation that for 0 ≤ θ ≤ π/2 the graph

of y = 2θ/π lies below the graph of y = sin θ. Therefore,∫ π/2

0

e−R sin θ θ ≤
∫ π/2

0

e−2θR/π dθ =
π

2R
− πe−R

2R
<

π

2R
.

Similarly, by observing that for π/2 ≤ θ ≤ π,

sin θ ≥ − 2

π
θ + 2,

we conclude that ∫ π

π/2

e−R sin θ θ <
π

2R
.

Using the bounds for the two integrals we have just discussed, we complete the

proof of (8.2).

We are now ready to evaluate our contour in this example. Consider the con-

tour similar to Example 8.5. Note that∫
ΓR

eiz − 1

z
dz = 0.

Hence, ∫
CR

eiz − 1

z
dz +

∫ R

−R

eix − 1

x
dx = 0.

Now, ∫ R

−R

eix − 1

x
dx = −

∫
CR

eiz − 1

z
dz = πi+

∫
CR

eiz

z
dz.

Now, ∣∣∣∣∫
CR

eiz

z
dz

∣∣∣∣ ≤ ∫ π

0

e−R sin θdθ <
π

R
,

where the last inequality follows from (8.2). Therefore,

lim
R→∞

∫
CR

eiz

z
dz = 0.

This implies that∫ ∞
−∞

sinx

x
dx = lim

R→∞
Im

∫ R

−R

eix − 1

x
dx = π.
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9.1 Winding number and Cauchy’s Residue Theorem for closed
curves

We have so far discussed only integral over simple closed curve. It is more natural

to consider general closed curve, i.e., curve that intersects itself several times.

Consider the function f(z) = zm, with m ≥ 2 being a positive integer. Then

the integral ∫
γ

f ′(ζ)

f(ζ)
dζ

can be written as ∫
f(γ)

1

ω
dω,

where γ is C(0; 1) and f(γ) is the image of the curve γ under f . Note that γ

can be parametrized by z(t) = eit, 0 ≤ t ≤ 2π. When t increases from 0 to 2π/m,

we see that zm moves around the origin in one full circle. By the time t reaches

2π, zm would have circled the origin m times. In other words, the curve f(γ)

“winds” around the origin m times and we observe that

1

2πi

∫
f(γ)

1

ω
dω =

1

2πi

∫
γ

(zm)′

zm
dz = m. (9.1)

This motivates the following definition:

definition 9.1 Suppose γ is a closed curve (not necessarily simple) and that

a 6∈ γ. Then

n(γ; a) =
1

2πi

∫
γ

1

z − a
dz

is called the winding number of γ around a.

theorem 9.1 For any closed curve γ and a 6∈ γ, n(γ; a) is an integer.
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Proof

Let γ be parametrized by z(t), 0 ≤ t ≤ 1. Set

F (s) =

∫ s

0

z′(t)

z(t)− a
dt, 0 ≤ s ≤ 1.

Let

G(s) =
eF (s)

z(s)− a
.

Now, since

F ′(s) =
z′(s)

z(s)− a
,

we conclude that

G′(s) = eF (s) F ′(s)

z(s)− a
− eF (s)z′(s)

(z(s)− a)2
= 0.

Hence,

G(s) =
eF (s)

z(s)− a
= C,

where C is a constant. Let s = 0. Since F (0) = 0, we find that

C = G(0) =
1

z(0)− a
. (9.2)

When s = 1, we find that

C = G(1) =
eF (1)

z(1)− a
. (9.3)

Now, γ is a closed curve and this implies that z(0) = z(1) and we deduce from

(9.2) and (9.3) that

eF (1) = 1

or

F (1) = 2πin(γ; a) = 2πik, k ∈ Z.

In other words, we have shown that n(γ; a) is an integer.

theorem 9.2 Suppose f is analytic in a star-shaped domain except for sin-

gularities at z1, z2, · · · , zm. Let γ be a closed curve enclosing these singularities.

Then ∫
γ

f(ζ)dζ = 2πi

m∑
k=1

n(γ; zk)Res(f, zk).
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Proof

We know that around each zj , f(z) can be written as

f(z) =

∞∑
k=0

aj,k(z − zj)k +

∞∑
k=1

bj,k
(z − zj)k

.

The expression
∞∑
k=1

bj,k
(z − zj)k

is called the principal part of the Laurent series expansion at zj . Collecting all

the principal parts of the Laurent series expansion of f(z) at each zj , 1 ≤ j ≤ m,

we may write

f(z) =
m∑
j=1

∞∑
k=1

bj,k
(z − zj)k

+ h(z),

where now h(z) is analytic in the region bounded by γ. By Cauchy-Goursat

Theorem, ∫
γ

h(ζ)dζ = 0.

Therefore, ∫
γ

f(ζ)dζ =

m∑
j=1

∫
γ

∞∑
k=1

bj,k
(ζ − zj)k

dζ

=

m∑
j=1

∫
γ

bj,1
ζ − zj

dζ = 2πi

m∑
j=1

n(γ; zj)Res(f ; zj),

since bj,1 = Res(f ; zj) and
1

2πi

∫
γ

1

ζ − zj
dζ = n(γ; zj).

Remark 9.1 In the proof above, we use Laurent series expansions of f(z) at

various singularities and extract the residues from these expansions.

9.2 Counting zeroes and poles

theorem 9.3 Suppose γ is a simple closed curve. If f is meromorphic (meaning

that the singularities of f are poles) inside and on γ and the zeroes and poles of

f are not on γ, then

Zγ(f)− Pγ(f) =
1

2πi

∫
γ

f ′(ζ)

f(ζ)
dζ,

where Zγ(f) is the number of zeroes of f enclosed by γ (a zero of order k being
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counted k times) and Pγ(f) is the number of poles of f enclosed by γ (a pole of

order ` being counted ` times).

Proof

Let z1, z2, · · · , zm be distinct zeroes of f with multiplicity α1, α2, · · · , αm and

p1, p2, · · · , p` be distinct poles of f with multiplicity β1, β2, · · · , β`. Note that

1

2πi

∫
γ

f ′(ζ)

f(ζ)
dζ =

m∑
u=1

Res

(
f ′(z)

f(z)
; zu

)
+
∑̀
v=1

Res

(
f ′(z)

f(z)
; pv

)
.

If a were a zero of f with multiplicity s, then

f(z) = (z − a)sg(z)

with g(a) 6= 0. This implies that

f ′(z)

f(z)
=

s

z − a
+
g′(z)

g(z)

and the residue of f ′/f at a is s.

Similarly if b were a pole of f with multiplicity t, then

f(z) =
h(z)

(z − b)t

with h(z) analytic at b. This implies that

f ′(z)

f(z)
=
−t
z − a

+
h′(z)

h(z)

and the residue of f ′/f at b is −t. Hence, the integral

1

2πi

∫
γ

f ′(ζ)

f(ζ)
dζ = Zγ(f)− Pγ(f).

If f has no poles in the region enclosed by γ, then we have

Zγ(f) =
1

2πi

∫
γ

f ′(ζ)

f(ζ)
dζ.

theorem 9.4 (Rouché’s Theorem) Suppose f and g are analytic inside and

on a simple closed curve γ and that |f(z)| > |g(z)| for all z ∈ γ. Then

Zγ(f + g) = Zγ(f)

inside γ where Zγ(h) is the number of zeroes of h(z) enclosed by γ.
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Proof

Note that by writing

f + g = f

(
1 +

g

f

)
and noting that

(f + g)′

f + g
=
f ′

f
+

(1 + g/f)′

1 + g/f
,

we conclude that

Zγ(f + g) = Zγ(f) +
1

2πi

∫
γ

1 + (g(ζ)/f(ζ))′

1 + g(ζ)/f(ζ)
dζ.

But the last integral can be written as∫
F (γ)

1

ω
dω,

where

ω = F (z) = 1 +
g(z)

f(z)
.

Now,

|f | > |g|

implies that

|g/f | < 1 or |g/f + 1− 1| < 1.

Hence, F (γ) ⊂ B(1; 1) and the function 1/ω is analytic in B(1; 1). Therefore,

the last integral is 0 and we have

Zγ(f) = Zγ(f + g).

example 9.1 Find the number of zeroes of ez/3− z in B(0; 1).

Solution

Observe that on |z| = 1,

|ez/3| = eRe(z)/3 ≤ e|z|/3 = e/3 < 1 = |z|.

By Rouché’s Theorem,

ZC(0;1)(−z) = ZC(0;1)(e
z/3− z).

Since ZC(0;1)(−z) = 1 (0 is the zero of −z in B(0; 1)), we conclude that

ZC(0;1)(e
z/3− z) = 1.
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example 9.2 Let λ > 1. Show that z + e−z − λ = 0 has exactly one solution

in the region Re(z) > 0.

Solution

The region Re(z) > 0 is unbounded. But we will consider the contour

γR = [−iR, iR] + CR

where CR is the semi-circle of radius R > 0 which lies on the right half plane.

On [−iR, iR],

|e−z| = |e−iα| = 1 < |iα− λ| = |z − λ| = |λ− z|,

since

|iα− λ| ≥ λ > 1.

On CR,

|e−z| = e−Re(z) < e0 = 1 < R− λ,

whenever R > λ+ 1. Now, on CR, we may write

R− λ = |z| − λ ≤ |z − λ|.

Therefore

|e−z| < |λ− z|

on CR. Combining with the estimate on [−iR, iR], we conclude that

|e−z| < |λ− z|

on γR. This implies that

1 = ZγR(−z + λ) = ZγR(e−z − z + λ)

and proves the claim in the problem.

9.3 Open mapping Theorem

In this section, we will use Rouché’s Theorem to prove the open mapping the-

orem. We will follow the proof given in the book “Complex Analysis” by Stein

and Shakarchi.

theorem 9.5 The image of an open set under a nonconstant analytic mapping

is an open set.
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Proof

Let V be an open set. We want to show that f(V ) is open. Let w0 ∈ f(V ).

Then there exists a z0 ∈ V such that f(z0) = w0. Since V is open, there exists

δ > 0 such that B(z0; δ) ⊂ V . Choose η > 0 such that B(z0; η) ⊂ B(z0; δ) and

the boundary C(z0; η) does not pass through the zeroes of f(z) − w0, which is

possible by Uniqueness Theorem. Since f(z) − w0 6= 0 on C(z0; η), we observe

that

ε := min
z∈C(z0;η)

|f(z)− w0| > 0.

For all z ∈ C(z0; η),

|f(z)− w0| ≥ ε.

Now suppose that |w − w0| < ε. then

f(z)− w0| ≥ ε > |w − w0| = |w0 − w|.

By Rouché’s Theorem, we conclude that

ZC(z0;η)(f(z)− w0) = ZC(z0;η)(f(z)− w0 + w0 − w) = ZC(z0;η)(f(z)− w).

This means that f(z) − w has at least a zero in B(z0; η). In other words, w ∈
f(B(z0; η) for each |w − w0| < ε. This implies that

B(w0; ε) ⊂ f(B(z0; η)) ⊂ f(V ).

Hence f(V ) is open.

We can prove maximum modulus theorem for closed balls directly from the

open mapping theorem. Let f(z) be analytic on B(z0; r) and continuous on

B(z0; r). Suppose |f(a)| is maximum for a ∈ B(z0; r). Now, f(a) ∈ f(B(z0; r),

which is open by open opening theorem. This means thatB(f(a); s) ⊂ f(B(z0; r))

for some s > 0. This means that there exists a point ξ on the boundary of

B(f(a); s) such that ξ = f(b) and |f(b)| > |f(a)|, which is a contradiction. (One

can choose ξ = f(a) + seiθ where θ = argf(a).)


